

(12) United States Patent Liu et al.

US 9,447,081 B2 (10) Patent No.: (45) Date of Patent: Sep. 20, 2016

(54) SUBSTITUTED PYRIMIDINES AS PHARMACEUTICALS AND INSECTICIDES

(71) Applicant: SHENYANG SINOCHEM AGROCHEMICALS R&D CO.,

LTD., Shenyang (CN)

(72) Inventors: Changling Liu, Liaoning (CN); Aiying Guan, Liaoning (CN); Jie Lan, Liaoning (CN); Lizeng Wang, Liaoning (CN); Bin Wang, Liaoning (CN);

Minna Zhu, Liaoning (CN); Qin Sun, Liaoning (CN); Weijing Ren, Liaoning (CN); Cong Feng, Liaoning (CN); Lanhui Ren, Liaoning (CN); Baoshan Chai, Liaoning (CN); Zhinian Li,

Liaoning (CN)

(73) Assignee: SHENYANG SINOCHEM AGROCHEMICALS R&D CO.,

LTD., Shenyang, Liaoning (CN)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/427,795

(22) PCT Filed: Oct. 24, 2013

(86) PCT No.: PCT/CN2013/085853

§ 371 (c)(1),

Mar. 12, 2015 (2) Date:

(87) PCT Pub. No.: WO2014/063638

PCT Pub. Date: May 1, 2014

(65)**Prior Publication Data**

> US 2015/0225378 A1 Aug. 13, 2015

(30)Foreign Application Priority Data

(51) Int. Cl. A61K 31/506 (2006.01)C07D 239/42 (2006.01)(2006.01)C07D 317/50 C07D 405/12 (2006.01)C07D 405/14 (2006.01)A01N 43/54 (2006.01)C07D 409/14 (2006.01)C07D 417/14 (2006.01)

(52) U.S. Cl. CPC C07D 405/12 (2013.01); A01N 43/54 (2013.01); C07D 405/14 (2013.01); C07D 409/14 (2013.01); C07D 417/14 (2013.01)

(58) Field of Classification Search CPC . A61K 31/506; C07D 239/42; C07D 317/50 USPC 514/256; 544/328; 549/434 See application file for complete search history.

(56)References Cited

U.S. PATENT DOCUMENTS

4,845,097 A 7/1989 Matsumoto et al. 4,977,264 A 12/1990 Mills et al. 4,985,426 A 1/1991 Yoshioka et al. 5,468,751 A 11/1995 Kristiansen et al. 5,925,644 A 7/1999 Jakobi et al. (Continued)

FOREIGN PATENT DOCUMENTS

CN1312250 9/2001 CN101938905 1/2011 (Continued)

OTHER PUBLICATIONS

Bniniecki, Stanislaw; Kolodynska, Zofia; Zlakowska, Wiedslawa. [β-3'-4'-Metylenodwuoksyfenylo)-Etyloamino]-Chinazoliny Oraz Produkty Kondensacji 4-Chlorochinazoly Z Uretanem Etylowym I Tiosynamina". ACTA Poloniae Pharmaceutica (1966), 23(1), 1-6.

(Continued)

Primary Examiner — Douglas M Willis (74) Attorney, Agent, or Firm — Smith, Gambrell & Russell, LLP

(57)ABSTRACT

The invention discloses a homopiperony lamine compound which has a structural general formula I as follows as shown in the specification:

$$R_3$$
 R_4
 R_5
 R_6
 R_6

Ι

wherein definitions of substituents in the formula are as shown in the specification.

The compound shown as the general formula I has broadspectrum bactericidal and insecticidal activity in the field of agriculture. The compound shown as the general formula I has a good prevention effect on various germs such as cucumber downy mildew, wheat powdery mildew, puccinia sorghi, rice blast and cucumber gray mold, and particularly, still has the good prevention and control effect on the cucumber downy mildew, the puccinia sorghi and the wheat powdery mildew at a lower dosage. At the same time, a part of compound has better insecticidal activity, and can be used for preventing and controlling various insect pests such as diamondback moths, myzus persicae, armyworms and tetranychus cinabarinus boisdu.

11 Claims, No Drawings

US 9,447,081 B2 Page 2

(56) U.S.	References Cited PATENT DOCUMENTS	WO WO WO	9822446 01/55143 02/094832	5/1998 8/2001 11/2002	
6,090,815 A 2004/0092402 A1 FOREIG	7/2000 Masuda et al. 5/2004 Kuragano et al. GN PATENT DOCUMENTS	WO WO ZA	2004093800 2009/081112 9710187 OTHER P	11/2004 7/2009 5/1998 UBLICATIONS	
DE 1964 EP 037 EP 042 EP 054	17317 5/1998 10704 5/1990 14125 4/1991 13402 5/1993 12325 1/1979 14177 11/1984 10085 3/1995 14613 5/1997 16355 2/1998 17662 1/2000 14473 4/2001 18380 8/2004	substance Farmaco Abstract Rasmuss of 4-t-bu ammonia 97(11), p Whitehe	en, C.A.H.; van Der I ttyl-5-halogenopyrimi 1°. Recueil des Travat pp. 288-292. ad, Calvert W. "Diur of the American Chen onal Search Report fo	diphenyl and diben: a (1965), 20(6), 45 Plas, H.C. "Aspects dines by potassium ux Chimiques des F etics III. 4,6-Diaminical Society, 1958,	zyl derivatives." 6-62 (one page of the amination amide in liquid 'ays-Bas (1978), inopyrimidines", 80, 2185-2189.

60

65

FIELD OF THE INVENTION

The present invention relates to the fungicide and insecticide. Specifically to substituted pyrimidines and uses thereof.

BACKGROUND OF THE INVENTION

Homopiperonylbenzylamine compounds having following general formula and specific compound PC-1 were reported in Patent EP 424125A2, some compounds have some fungicidal and acricidal activities at the concentration of 50-500 ppm.

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_6
 R_7
 R_8
 R_9
 R_9

The benzylamine compound containing benzoxazoly moiety as shown below was disclosed in patent WO 2001055143 applied as fungicide, insecticide and acricide:

$$\begin{array}{c|c}
N & & & & 45 \\
\hline
N & & & & & \\
\end{array}$$

$$\begin{array}{c|c}
N & & & & \\
\end{array}$$

$$\begin{array}{c|c}
N & & & & \\
\end{array}$$

$$\begin{array}{c|c}
50 & & & \\
\end{array}$$

Patent WO 2002094832 published benzylamine compound having structural general formula as shown in the following and the specific compound:

$$\begin{array}{c|c}
R_3 & R_4 & R_5 & R_6 \\
R_2 & N & N & N & N & N
\end{array}$$

2

-continued
$$\begin{array}{c} \text{CH}_3 \\ \text{N} \\ \text{H}_3 \text{C} \\ \end{array}$$

Patent EP 370704, EP 543402 and JP 07070085 published benzylamine compound having structural general formula as shown in the following and the specific compound:

$$\begin{array}{c} \text{OCHF}_2 \\ \text{CI} \\ \text{R}^1 \\ \text{N} \\ \end{array}$$

Patent WO2009081112A2 disclosed homopiperonylbenzylamine compound as shown below with application as herbicide:

The following ethylamine compounds having general formula and the preparation method of the specific compound were reported in patent JP 10036355:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

I

The following ethylamine compound was reported used as fungicide in patent JP54002325:

Acta Poloniae Pharmaceutica (1966), 23(1), 1-6 disclosed homopiperonylethylamine compound as shown below ³⁰ ACTA-1 applied as pharmaceutical:

In the prior art, although many homopiperonylbenzylamine, homopiperonylethylamine compounds somewhat similar to the structures in present invention, and benzylamine, ethylamine structures containing pyrimidinyl moiety, the substituted pyrimidines having general formula I of the present invention has not been reported.

SUMMARY OF THE INVENTION

New pesticides with novel structure and excellent property are needed by modern agricultural production. The object of the present invention is to provide a kind of homopiperonylethylamine to control a variety of plant pathogens/diseases and/or insects/mites at very low doses, which can be used to prepare substances to control pathogens and insects/mites in agriculture and other field.

Detailed description of the invention is as follows:

The present invention provides a homopiperonylethylamine compounds having general formula I:

$$R_3$$
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6

Wherein:

R₁ is selected from halo, C₁-C₁₂-alkyl, C₃-C₁₂-cycloalkyl, haloC₁-C₁₂alkyl, C_1 - C_{12} alkoxy, C_3 - \bar{C}_{12} alkenyloxy, haloC₃-C₁₂alkenyloxy, C_{12} alkoxy, halo C_3 - C_{12} alkynyloxy, C_1 - C_{12} -alkylthio, C_3 - C_{12} alkynyloxy, C_1 - C_{12} alkylsulfonyloxy, ${\rm C_1\text{-}C_{12}} alkyl sulfonyl,$ C_1 - C_{12} alkylsulfinyl, COOH, C_1 - C_{12} alkoxycarbonyl, CONH, C_1 - C_{12} alkylaminocarbonyl, NHOCH₃, CONHCN, $N(CH_3)NH_2$ $NHN(CH_3)_2$, 20 CONHCH2CN, NH2, $\bar{\mathrm{C}}_{1}\text{-}\mathrm{C}_{12}$ alkylamino, di(C1-C12alkyl) amino. cyanoC₁-C₁₂alkylamino, C_1 - C_{12} alkylcarbonylamino, C_1 - C_{12} alkoxycarbonylamino, C_1 - C_{12} alkoxy C_1 - C_{12} alkyl, C_1 - C_{12} alkylthio C_1 - C_{12} alkyl, C₁-C₁₂alkylsulfonylC₁- C_1 - C_{12} alkylsulfinyl C_1 - C_{12} alkyl, 25 C_{12} alkyl, hydroxylC₁-C₁₂alkyl C_1 - C_{12} alkylcarbonyloxy C_1 - C_{12} alkyl; R₂ is selected from H, halo, CN, NO₂, C₁-C₁₂alkyl,

K₂ is selected from H, halo, CN, NO₂, C₁-C₁₂aikyi C₁-C₁₂alkoxy or haloC₁-C₁₂alkoxy;

 R_3 is selected from H, halo, $C_1\text{-}C_{12}$ alkyl, $C_3\text{-}C_{12}$ eycloalkyl, halo $C_1\text{-}C_{12}$ alkyl, $C_1\text{-}C_{12}$ alkylthio, $C_1\text{-}C_{12}$ alkoxy or halo $C_1\text{-}C_{12}$ alkoxy;

40 C₁₂alkylsulfonyl, C₁-C₁₂alkylsulfonyl, di(C₁-C₁₂alkyl)aminosulfonyl, di(C₁-C₁₂alkyl)aminosulfonyl,

C₁-C₁₂alkylsulfonylaminocarbonyl, C₁-C₁₂alkylcarbonylaminosulfonyl,

 C_3 - C_{12} cycloalkyloxycarbonyl, C₁-C₁₂alkylcarbonyl, haloC₁-C₁₂alkylcarbonyl, C₁-C₁₂alkoxycarbonyl, haloC₁-C₁-C₁₂alkylcarbonylC₁-C₁₂alkyl, C₁₂alkoxycarbonyl, C₁-C₁₂alkoxycarbonyl C_1 - C_{12} alkyl, C_1 - C_{12} alkylaminocarbonyl, di $(C_1$ - C_{12} alkyl)aminocarbonyl, C_2 - C_{12} alkynoxycarbonyl, C_1 - C_{12} alkoxycarbonyl, C₂-C₁₂ alkenoxycarbonyl, C₁-C₁₂alkoxy C₁-C₁₂alkylaminothio, di(C₁-C₁₂alkyl)aminothio, optionally substituted arylcarbonyl C₁-C₆alkyl, arylcarbonyl, aryloxycarbonyl, arylC₁-C₆alkyloxycarbonyl, arylC₁-C₆alkyl or heteroaryl C₁-C₆alkyl wherein substituents are independently selected from the group consisting of halo, NO2, CN, C_1 - C_6 alkyl, halo C_1 - C_6 alkyl, C_1 - C_6 alkoxy or halo C_1 -

 R_5 , R_6 are independently selected from H, C_1 - C_8 alkyl, C_3 - C_8 cycloalkyl, C_2 - C_8 alkenyl, C_2 - C_8 alkynyl, halo C_2 - C_8 alkenyl, halo C_2 - C_8 alkynyl, C_1 - C_8 alkyl, optionally substituted aryl C_1 - C_4 alkyl or heteroaryl C_1 - C_4 alkyl, wherein substituents are independently selected from the group consisting of halo, C_1 - C_4 alkyl, halo C_1 - C_4 alkyl, C_1 - C_4 alkoxy or halo C_1 - C_4 alkoxy;

or R_5 and R_6 , together with the carbon to which they are attached, form a C_3 - C_8 carbocycle;

or an agricultural or pharmaceutical salt thereof.

 R_5,R_6 may be the same or different, selected respectively from $H,\,C_1\text{-}C_8\text{alkyl},\,C_3\text{-}C_8\text{cycloalkyl},\,C_2\text{-}C_8\text{ alkenyl},\,C_2\text{-}C_8$ alkynyl, halo $C_2\text{-}C_8\text{alkenyl},$ halo $C_2\text{-}C_8\text{alkynyl},$ halo $C_2\text{-}C_8\text{alkynyl},$ $C_1\text{-}C_8$ alkoxy $C_1\text{-}C_8\text{alkyl},$ unsubstituted or further substituted aryl $C_1\text{-}C_4\text{alkyl}$ or heteroaryl $C_1\text{-}C_4\text{alkyl}$ by 1 to 3 following 5 groups: halo, $C_1\text{-}C_4\text{alkyl},$ halo $C_1\text{-}C_4\text{alkyl};$ $C_1\text{-}C_4$ alkoxy or halo $C_1\text{-}C_4$ alkoxy;

CR₅R₆ can also form C₃-C₈ cycle;

Or the salts formed from the compounds of general formula I.

The preferred compounds of this invention are: In the general formula I

 R_1 is selected from halo, $C_1\text{-}C_8$ alkyl, halo $C_1\text{-}C_8$ alkyl, $C_3\text{-}C_8\text{cycloalkyl}, \ C_1\text{-}C_8\text{alkoxy}, \ halo <math display="inline">C_1\text{-}C_8\text{alkoxy}, \ C_3\text{-}C_8$ alkenyloxy, halo $C_3\text{-}C_8$ alkenyloxy, $C_3\text{-}C_8$ alkynyloxy, halo $C_3\text{-}C_8$ alkynyloxy, $C_1\text{-}C_8$ alkylsulfonyloxy, $C_1\text{-}C_8$ alkylsulfonyloxy, $C_1\text{-}C_8$ alkylsulfonyl, $C_1\text{-}C_8$ alkylthio $C_1\text{-}C_8$ alkyl, $C_1\text{-}C_8$ alkylsulfonyl, $C_1\text{-}C_8$ alkylsulfony

 R_2 is selected from H, halo, CN, NO₂, C_1 - C_8 alkyl, 25 C_1 - C_8 alkoxy or halo C_1 - C_8 alkoxy;

R₃ is selected from H, halo or C₁-C₈alkyl;

R₄ is selected from H, OH, C(=O)H, C₁-C₈alkyl, haloC₁-C₈alkyl, C₁-C₈alkoxy, haloC₁-C₈alkoxy, C₃-C₈cycloalkyl, C_1 - C_8 alkylthio, C_2 - C_8 alkenylthio, C_2 - C_8 alkenyl, C_2 - C_8 30 alkynyl, haloC₂-C₈alkenyl, haloC₂-C₈alkynyl, C₁-C₈ alkoxy $\mathrm{C_1\text{-}C_8}$ alkyl, halo $\mathrm{C_1\text{-}C_8}$ alkoxy $\mathrm{C_1\text{-}C_8}$ alkyl, $\mathrm{C_1\text{-}C_8}$ alkylthio $\mathrm{C_1\text{-}C_8}$ alkyl, halo $\mathrm{C_1\text{-}C_8}$ alkyl
thio $\mathrm{C_1\text{-}C_8}$ alkyl, $\mathrm{C_1\text{-}C_8}$ alkyl $sulfinyl, \ \ haloC_1\text{-}C_8 \ \ alkylsulfinyl, \ \ C_1\text{-}C_8 \ \ alkylsulfonyl,$
$$\label{eq:continuous} \begin{split} &\text{haloC}_1\text{-}C_8 \text{ alkylsulfonyl, } C_1\text{-}C_8 \text{ alkylaminosulfonyl, } \text{di}(C_1\text{--}35 \\ &C_8 \text{ alkyl)aminosulfonyl, } C_1\text{-}C_8 \text{ alkylsulfonylaminocarbonyl,} \end{split}$$
C₁-C₈ alkylcarbonylaminosulfonyl, C₃-C₈ cycloalkyloxycarbonyl, C₁-C₈alkylcarbonyl, haloC₁-C₈alkylcarbonyl, haloC₁-C₈ alkoxycarbonyl, alkoxycarbonyl, C_1 - C_8 alkylcarbonyl C_1 - C_8 alkyl, C_1 - C_8 C_1 - C_8 alkyl, C_1 - C_8 alkylaminocarbonyl, di(C_1 - C_8 alkyl)aminocarbonyl, C_2 - C_8 alkenoxycarbonyl, C_2 - C_8 alkynoxycarbonyl, C₁-C₈ alkoxy C₁-C₈ alkoxycarbonyl, C₁-C₈ alkylaminothio, di(C1-C8 alkyl)aminothio, optionally substituted arylcarbonyl C₁-C₄alkyl, arylcarbonyl, aryloxycarbonyl, 45 arylC₁-C₆alkyloxycarbonyl, arylC₁-C₆alkyl or heteroaryl C₁-C₆alkyl, wherein substituents are independently selected from the group consisting of halo, NO₂, CN, C₁-C₄alkyl, $haloC_1$ - C_4 alkyl, C_1 - C_4 alkoxy or $haloC_1$ - C_4 alkoxy;

 $R_5,\ R_6$ are independently selected respectively from H, 50 $C_1\text{-}C_8\text{alkyl},\ C_3\text{-}C_8\text{cycloalkyl},\ C_2\text{-}C_8$ alkenyl, $C_2\text{-}C_8$ alkenyl, halo $C_2\text{-}C_8$ alkenyl, halo $C_2\text{-}C_8$ alkenyl, $C_1\text{-}C_8\text{alkoxy}$ $C_1\text{-}C_8\text{alkyl},$ optionally substituted aryl $C_1\text{-}C_4\text{alkyl}$ or heteroaryl $C_1\text{-}C_4\text{alkyl}$ wherein substituents are independently selected from the group consisting of halo, $C_1\text{-}C_4\text{alkyl},\ 55$ halo $C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4$ alkoxy or halo $C_1\text{-}C_4$ alkoxy;

or R_5 and R_6 , together with the carbon to which they are attached form a C_3 - C_8 carbocycle;

or an agricultural or pharmaceutical salt thereof.

The further preferred compounds of this invention are: In 60 the general formula I

 R_1 is selected from halo, C_1 - C_4 alkyl, halo C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, C_1 - C_4 alkoxy, halo C_1 - C_4 alkoxy, C_3 - C_6 alkenyloxy, halo C_3 - C_6 alkenyloxy, C_3 - C_6 alkynyloxy, C_1 - C_4 alkylsulfonyloxy, 65 C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfonyl, C_1 - C_4 alkylamino, di(C_1 - C_4 alkyl)amino, cyano

6

 $\begin{array}{lll} C_1\text{-}C_4\text{alkylamino}, & C_1\text{-}C_4\text{alkylcarbonylamino}, \\ C_1\text{-}C_4\text{alkoxycarbonylamino}, & C_1\text{-}C_4\text{alkoxy} & C_1\text{-}C_4\text{alkyl}, \\ C_1\text{-}C_4\text{alkylthio} & C_1\text{-}C_4\text{alkyl}, & C_1\text{-}C_4\text{alkylsulfinyl} & C_1\text{-}C_4\text{alkyl}, \\ C_1\text{-}C_4\text{alkylsulfonyl} & C_1\text{-}C_4\text{alkyl}, & \text{hydroxyl} & C_1\text{-}C_4\text{alkyl} & \text{or} \\ C_1\text{-}C_4\text{alkylcarbonyloxy} & C_1\text{-}C_4\text{alkyl}; \\ \end{array}$

 $\rm R_2$ is selected from H, halo, CN, NO2, C1-C4alkyl, C1-C4alkoxy or halo C1-C4alkoxy;

 R_3 is selected from H, halo or C_1 - C_4 alkyl;

R₄ is selected from H, OH, C(=O)H, C₁-C₄alkyl, halo 10 C₁-C₄alkyl, C_1 - C_4 alkoxy, C₂-C₄alkenylthio, C₃-C₆cycloalkyl, C₁-C₄alkylthio, C2-C4alkenyl, C_2 - C_4 alkynyl, halo C_2 - C_4 alkenyl, halo C_2 - C_4 alkynyl, C_1 - C_4 alkoxy C₁-C₄alkyl, halo C₁-C₄ alkoxy C₁-C₄alkyl, C_1 - C_4 alkylthio C_1 - C_4 alkyl, halo C_1 - C_4 alkylthio C_1 - C_4 alkyl, halo C_1 - C_4 alkylsulfinyl, C₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, halo C₁-C₄ alkylsulfonyl, C₁-C₄ alkylaminosulfonyl, di(C₁-C₄ alkyl)aminosulfonyl, C₁-C₄ alkylsulfonylaminocarbonyl, C₁-C₄ alkylcarbonylaminosulfonyl, C₃-C₆ cycloalkyloxycarbonyl, C₁-C₄alkylcarbonyl, halo C₁-C₄alkylcarbonyl, C₁-C₄ alkoxycarbonyl, halo C₁-C₄ alkoxycarbonyl, C₁-C₄alkylcarbonyl C₁-C₄alkyl, C₁-C₈ alkoxycarbonyl C₁-C₄alkyl, C₁-C₄ alkylaminocarbonyl, $\begin{array}{ll} di(C_1\text{-}C_4\text{alkyl}) a minocarbonyl, & C_2\text{-}C_4 & alkenoxy carbonyl, \\ C_2\text{-}C_4 & alkynoxy carbonyl, & C_1\text{-}C_4 & alkoxy \end{array}$ C_2 - C_4 C_1 - C_4 alkoxycarbonyl, C_1 - C_4 alkylaminothio, di(C_1 - C_4 alky-1)aminothio, optionally substituted arylcarbonyl C₁-C₄alkyl, arylcarbonyl, aryloxycarbonyl, arylC₁-C₄alkyloxycarbonyl, arylC1-C4alkyl or heteroaryl C1-C4alkyl, wherein substituents are independently selected from the group consisting of halo, NO₂, CN, C₁-C₄alkyl, haloC₁-C₄alkyl, C₁-C₄ alkoxy or halo C_1 - C_4 alkoxy;

 $R_5,\ R_6$ are independently selected respectively from H, $C_1\text{-}C_4\text{alkyl},\ C_3\text{-}C_6\text{cycloalkyl},\ C_2\text{-}C_4\text{ alkenyl},\ C_2\text{-}C_4\text{ alkynyl},$ halo $C_2\text{-}C_4$ alkenyl, halo $C_2\text{-}C_4$ alkenyl, halo $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ alkoxy $C_1\text{-}C_4\text{alkyl},$ optionally substituted aryl $C_1\text{-}C_4\text{alkyl}$ or heteroaryl $C_1\text{-}C_4\text{alkyl},$ wherein substituents are independently selected from the group consisting of halo, $C_1\text{-}C_4\text{alkyl},$ halo $C_1\text{-}C_4\text{alkyl},\ C_1\text{-}C_4$ alkoxy or halo $C_1\text{-}C_4$ alkoxy;

alkoxycarbonyl, or R_5 and R_6 , together with the carbon to which the are alkoxycarbonyl 40 attached, form a C_3 - C_8 carbocycle;

or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.

The further preferred compounds of this invention are: In the general formula I

 $\begin{array}{c} R_1 \text{ is selected from halo, } C_1\text{-}C_4\text{alkyl, } CF_3, CHF_2, CCl_3, \\ CHCl_2, \ C_3\text{-}C_6\text{cycloalkyl, } C_1\text{-}C_4\text{alkoxy, halo } C_1\text{-}C_4\text{alkoxy,} \\ C_1\text{-}C_4\text{alkylthio, } \ C_1\text{-}C_4\text{alkylsulfinyl, } \ C_1\text{-}C_4 \ \text{alkylsulfonyl,} \\ C_1\text{-}C_4\text{alkoxy}C_1\text{-}C_4\text{alkyl or } C_1\text{-}C_4 \ \text{alkylthio } C_1\text{-}C_4\text{alkyl;} \end{array}$

 R_2 is selected from H, halo, CN, NO₂, C_1 - C_4 alkyl, C_1 - C_4 alkoxy or halo C_1 - C_4 alkoxy;

 R_3 is selected from H or C_1 - C_4 alkyl:

 R_4 is selected from H, C(=O)H, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, optionally substituted arylcarbonyl C_1 - C_4 alkyl, arylcarbonyl, aryloxycarbonyl, aryl C_1 - C_4 alkyloxycarbonyl, aryl C_1 - C_4 alkyloxycarbonyl, aryl C_1 - C_4 alkyl, wherein substituents are independently selected from the group consisting of halo, NO_2 , CN, C_1 - C_4 alkyl, halo C_1 - C_4 alkyl, C_1 - C_4 alkoxy or halo C_1 - C_4 alkoxy;

 R_5 , R_6 are independently selected respectively from H or C_1 - C_4 alkyl;

or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic

acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.

The further preferred compounds of this invention are: In the general formula I

 R_1 is selected from halo, C_1 - C_4 alkyl, C_3 - C_6 cycloalkyl, CF_3 or CHF_7 ;

 $\rm R_2$ is selected from H, halo, CN, NO $_2$ or $\rm C_1\text{-}C_4$ alkyl;

R₃ is H;

 R_{4} is H;

 $\rm R_5,\,R_6$ are selected respectively from H, CH $_3$ or $\rm C_2H_5;$ or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.

The further preferred compounds of this invention are: In the general formula I

 R_1 is selected from F, Cl, Br, CH₃, C_2H_5 , $n-C_3H_7$, $i-C_3H_7$, $n-C_4H_9$, $i-C_4H_9$, $t-C_4H_9$, cyclopropyl, CF₃ or CHF₂;

R₂ is Cl;

 R_3 is H;

R₁ is H;

 R_5 , R_6 are selected respectively from H, CH_3 or C_2H_5 ; or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic 30 acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.

The most preferred compounds of this invention are: In the general formula I

R₁ is selected from Cl, CH₃, C₂H₅, CF₃ or CHF₂;

 R_2 is Cl;

 R_3 is H;

R₄ is H;

 R_5 is H; and R_6 is H;

or an agricultural or pharmaceutical salt thereof selected 40 from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, trifluoroacetic acid, methylsulfonic acid and p-toluenesulfonic acid.

The terms used above to definite the compounds of general formula I represent substitutes as follow:

The "halogen" or "halo" is fluorine, chlorine, bromine or iodine.

The "alkyl" stands for straight or branched chain alkyl, such as methyl, ethyl, propyl, isopropyl or tert-butyl.

The "cycloalkyl" is substituted or unsubstituted cyclic 50 alkyl, such as cyclopropyl, cyclopentyl or cyclohexyl. The substitute(s) is(are) methyl, halogen, etc.

The "haloalkyl" stands for straight or branched chain alkyl, in which hydrogen atoms can be all or partly substituted with halogen, such as chloromethyl, dichloromethyl, 55 trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl etc.

The "alkoxy" refers to straight or branched chain alkyl, which is linked to the structure by oxygen atom.

The "alkenylthio" refers to straight or branched chain 60 alkenyl, which is linked to the structure by sulfur atom. Such as CH₂—CHCH₂S—.

The "haloalkoxy" refers to straight or branched chain alkoxy, in which hydrogen atoms may be all or partly substituted with halogen, such as chloromethoxy, dichlo- 65 romethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, trifluoromethoxy,

8

roethoxy, etc. The "alkylthio" refers to straight or branched chain alkyl, which is linked to the structure by sulfur atom.

The "alkenyl" refers to straight or branched chain alkenyl, such as ethenyl, 1-propenyl, 2-propenyl and different isomer of butenyl, pentenyl and hexenyl. Alkenyl also includes polyene, such as propa-1,2-dienyl and hexa-2,4-dienyl. The "haloalkenyl" stands for straight or branched chain alkenyl, in which hydrogen atoms can be all or partly substituted with halogen. The "alkynyl" refers to straight or branched chain alkynyl, such as ethynyl, 1-propynyl, 2-propynyl and different isomer of butynyl, pentynyl and hexynyl. Alkynyl also includes groups including more than one triple bonds, such as hexa-2,5-diynyl. The "haloalkynyl" stands for straight or branched chain alkynyl, in which hydrogen atoms can be all or partly substituted with halogen.

The alkenoxyl refers to straight or branched chain alkynes is linked to the structure by oxygen, The haloalkenoxyl stands for a straight-chain or branched alkenoxyl, in which hydrogen atoms may be all or partly substituted with halogen. The alkynoxyl refers to straight or branched chain alkynes is linked to the structure by oxygen. The haloalkynoxyl stands for a straight-chain or branched alkynoxyl, in which hydrogen atoms may be all or partly substituted with halogen.

The "alkylamino" refers to straight or branched chain alkyl, which is linked to the structure by nitrogen atom. The "cyanoalkylamino" refers to alkylamino, in which hydrogen atoms may be all or partly substituted with cyano, such as CNCH₂NH—, CNCH₂CH₂NH—.

The "alkylsulfinyl" means a straight-chain or branched alkyl is linked to the structure by (—SO—), such as methylsulfinyl.

The "haloalkylsulfinyl" stands for a straight-chain or branched alkylsulfinyl, in which hydrogen atoms may be all so or partly substituted with halogen.

The "alkylsulfonyl" means a straight-chain or branched alkyl is linked to the structure by (— SO_2 —), such as methylsulfonyl.

The "haloalkylsulfonyl" stands for a straight-chain or branched alkylsulfonyl, in which hydrogen atoms may be all or partly substituted with halogen.

The "alkylaminosulfonyl" refers to alkyl-NH—SO₂—. The "dialkylaminosulfonyl" refers to (alkyl)₂-NH—SO₂—. The "alkylsulfonylaminocarbonyl" refers to alkyl-SO₂—NH—CO—. The "alkylcarbonylaminosulfonyl" refers to alkyl-CO—NH—SO₂—. The "alkylcarbonyl" means alkyl is linked to the structure by carbonyl, such as CH₃CO—, CH₃CH₂CO—. The "haloalkylcarbonyl" stands for a straight-chain or branched alkylcarbonyl, in which hydrogen atoms may be all or partly substituted with halogen, such as CF₃CO—.

The "alkylcarbonylalkyl" refers to alkyl-CO-alkyl-. The "alkylcarbonylamino" such as CH $_3$ CONH—, CH $_3$ CH $_2$ NHCONH—. The "alkylsulfonyloxy" means alkyl-S(O) $_2$ —O—. The "alkoxycarbonyl" means alkyl-O—CO—, such as CH $_3$ OCO—, C $_2$ H $_5$ OCO—. The "cycloalkyloxycarbonyl" means cyclopropyloxycarbonyl, cyclohexyloxycarbonyl. The "haloalkoxycarbonyl" means alkoxycarbonyl, in which hydrogen atoms can be all or partly substituted with halogen, such as ClCH $_2$ CH $_2$ OCO—, CF $_3$ CH $_2$ OCO—.

The "alkenoxycarbonyl" means $CH_2 \equiv CHCH_2OCO$. The "alkynoxycarbonyl" means $CH = CCH_2OCO$. The "alkoxyalkoxycarbonyl" stands for $CH_3OCH_2CH_2OCO$. The "alkylaminothio" refers to CH_3NHS —, C_2H_5NHS —. The "dialkylaminothio" refers to $(CH_3)_2NS$ —, $(C_2H_5)_2NS$ —. The "alkoxycarbonylalkyl" refers to alkyl-O—CO-alkyl, such as CH_3OCOCH_2 —. The "alkoxycarbo-

45

50

55

60

65

10
TABLE 1-continued

nylamino" refers to alkyl-O—CO—NH. The "alkoxyalkyl" means alkyl-O-alkyl-, such as CH ₃ OCH ₂ —. The "alkylth-
ioalkyl" means alkyl-S-alkyl-, such as CH ₃ SCH ₂ —. The
"haloalkoxyalkyl" refers to alkoxyalkyl, in which hydrogen
atom may be all or partly substituted with halogen, such as
ClCH2CH2OCH2-, CF3CH2OCH2 The "halo alkylthio-
alkyl" refers to alkylthioalkyl, in which hydrogen atom may
be all or partly substituted with halogen, such as
ClCH ₂ CH ₂ SCH ₂ —, CF ₃ CH ₂ SCH ₂ —. The "alkylaminocar-
bonyl" means alkyl-NH—CO—, such as CH ₃ NHCO—,
C ₂ H ₅ NHCO—. The "dialkylaminocarbonyl" means
$(alkyl)_2$ -NH—CO—, such as $(CH_3)_2$ —N—CO—,
$(C_2H_5)_2$ —N—CO—. The "hydroxylalkyl" refers to
HOCH ₂ —. The "alkylcarbonyloxyalkyl" such as
CH_3COOCH_2 —.

The "aryl" in arylalkyl, arylcarbonyl, arylcarbonylalkyl, aryloxycarbonyl and arylalkyloxycarbonyl includes phenyl or naphthyl etc. The "heteroaryl" in heteroarylalkyl stands for five member ring or six member ring containing one or more N, O, S hetero atoms, such as furyl, pyrazolyl, thiazolyl, pyridinyl, pyrimidinyl, pyrazinyl, pyridazinyl, triazinyl, quinolinyl, etc. Arylalkyl means benzyl, phenylethyl, 4-Cl-benzyl, etc. The heteroarylalkyl such as

etc.

Arylcarbonyl refers to benzoyl, 4-Cl-benzoyl, etc. Arylcarbonylalkyl refers to $PhCOCH_2$ —, etc.

Aryloxycarbonyl such as phenoxycarbonyl, p-chlorophenoxycarbonyl, p-nitrophenoxycarbonyl, naphthyloxycarbonyl, etc.

Arylalkyloxycarbonyl means benzyloxycarbonyl, p-chlorobenzyloxycarbonyl, p-trifluoromethylbenzyloxycarbonyl, 40

In the general formula I, part of preferred substituents of R_1 , R_2 , R_3 , R_4 , R_5 and R_6 are separately listed in table 1 to table 5, but without being restricted thereby.

TABLE 1

	R ₁ su	bstituents	
R_1	R_1	R_1	R_1
F Cl Br I CH ₃ C ₂ H ₅	CHF ₂ CHBr ₂ CF ₃ CH(CH ₃)F CH(CH ₃)Cl CH(CH ₃)Br	SCH ₃ SOCH ₃ SO ₂ CH ₃ COOH COOCH ₃ COOC ₂ H ₅	NHOCH ₃ NHOC ₂ H ₅ NHCOCH ₃ NHCOC ₂ H ₅ NHCOOCH ₃ NHCOOC ₂ H ₅

		R ₁ subs	tituents	
5	R_1	R_1	R_1	R_1
10	$n-C_3H_7$ $i-C_3H_7$ $n-C_4H_9$ $i-C_4H_9$ $t-C_4H_9$	$\begin{array}{c} \mathrm{CH}(\mathrm{n\text{-}}\mathrm{C}_4\mathrm{H}_9)\mathrm{F} \\ \mathrm{CH}(\mathrm{CH}_3)_2\mathrm{F} \\ \mathrm{OCH}_3 \\ \mathrm{OC}_2\mathrm{H}_5 \\ \mathrm{OCF}_3 \end{array}$	CONH ₂ CONHCH ₃ CONHCN CONHCH ₂ CN CON(CH ₃) ₂	N(CH ₃)NH2 NHN(CH ₃) ₂ CH ₂ OCH ₃ CH ₂ OCH ₂ CH ₃ CH ₂ CH ₂ OCH ₃
15		OCH ₂ CH=CH ₂	NH ₂	CH ₂ CH ₂ OCH ₂ CH ₃
20		OCH ₂ CH=CHCl	NHCH ₃	CH(CH ₃)SCH ₃
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ОСН2С≕СН	NHC ₂ H ₅	CH(CH ₃)SOCH ₃
25	CH ₂ Cl CHCl ₂ CCl ₃	OCH ₂ C≕C—I OCH ₂ C≕CCH ₃ OSO ₂ CH ₃	$N(CH_3)_2$ $N(C_2H_5)_2$ $NHCH_2CN$	CH(CH ₃)SO ₂ CH ₃ CH(CH ₃)OH CH(CH ₃)OCOCH ₃

TABLE 2

$ m R_2$ substituents			
R_2	R_2	R_2	R_2
Н	NO ₂	t-C ₄ H ₉	OC₄H9-i
F	CH_3	OCH_3	OC_4H_9 -t
C1	C_2H_5	OC_2H_5	OCH ₂ F
$_{\mathrm{Br}}$	$n-C_3H_7$	OC_3H_7 -n	$OCHF_2$
I	i-C ₃ H ₇	OC_3H_7 -i	OCF ₃
CN	n-C ₄ H ₉	OC₄H ₉ -n	OCH ₂ CF ₃

TABLE 3

	R ₃ sı	ıbstituents		
R ₃	R_3	R_3	R_3	R ₃
H F Cl	$\begin{array}{l} \text{i-C}_3\text{H}_7 \\ \text{n-C}_4\text{H}_9 \\ \text{t-C}_4\text{H}_9 \end{array}$	CHF ₂ CHBr ₂ CF ₃	OCH ₃ OC ₂ H ₅ OC ₃ H ₇ -1	
Br		CH(CH ₃)F	OC₃H ₇ -i	SC ₃ H ₇ -n
I		CH(CH ₃)Cl	OC ₄ H ₉ -r	ı SC₃H ₇ -i
CH ₃		CH(CH ₃)Br	OC₄H ₉ -i	SC_4H_9 -n
C ₂ H ₅ n-C ₃ H ₇	CHCl ₂ CCl ₃	CH(n-C ₄ H ₉)F CH(CH ₃) ₂ F	OC ₄ H ₉ -t OCF ₃	SC ₄ H ₉ -i SC ₄ H ₉ -t

TABLE 4

	R ₄ substituents			
			D	
$\begin{array}{c} R_4 \\ H \\ CH_3 \\ n\cdot C_4H_9 \\ CH_2Br \\ CH_2Cl \\ OCH_3 \\ OCF_3 \\ SCH_3 \\ CH_2CH=CH_2 \\ CH_2C=C-I \\ CH_2CH_2OCH_2CH_3 \\ CH_2SCH_3 \\ CH_2SCH_3 \\ CH_2SCH_2Cl \\ SOC_2H_5 \\ SO_2C_2H_5 \\ SO_2NHCH_3 \\ COC_2H_5 \\ COi-C_4H_9 \\ COOCH_3 \\ COOCF_3 \\ CH_2COOC_2H_5 \\ CONHC_2H_5 \\ COOCH_2CH=CH_2 \\ SNHCH_3 \\ COCH_2COOC_2H_5 \\ CONHC_2COOC_2H_5 \\ CONHC_2COOC_2H_5 \\ CONHC_2COOC_2CH_5 \\ CONHC_2COOC_2CH_5 \\ CONHC_2COOC_2CH_5 \\ CONHC_2COOC_2CH_5 \\ COOCCCOCC_2CCOCC_2CCOCCCCC \\ SNHCCCCOCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$	$\begin{array}{c} R_4 \\ \\ OH \\ C_2H_5 \\ i-C_4H_9 \\ i-C_4H_9 \\ CHF_2 \\ CHCl_2 \\ OC_2H_5 \\ OCH_3CF_3 \\ SC_2H_5 \\ CH_2CH=CCl_2 \\ CH_2OCH_3 \\ CH_2OCH_2Cl \\ CH_3CH_2CH_2Cl \\ CH_3SCH_2CH_2Cl \\ SOCF_3 \\ SO_2CF_3 \\ SO_2N(CH_3)_3 \\ CO-n-C_3H_7 \\ CO-t-C_4H_9 \\ COOC_2H_5 \\ COOCH_2CH_2Cl \\ CH_2COCH_3 \\ CONH-t-C_4H_9 \\ COOCH_2C=CH \\ SNHC_2H_5 \\ \end{array}$	$\begin{array}{l} R_4 \\ -C(=\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!$	$\begin{array}{c} R_4 \\ \\ CBr_3 \\ i-C_3H_7 \\ CCl_3 \\ CF_3 \\ CH_2F \\ OC(CH_3)_3 \\ OCHF_2 \\ CH_2CH_2CH_2 \\ CH_2C=CH \\ CH_2CH_2OCH_3 \\ CH_2CH_2OCH_2Cl \\ CH_2CH_2SCH_2CH_3 \\ SO_2CH_3 \\ SO_2CH_3 \\ SO_2NHCOCH_3 \\ COCH_3 \\ COCH_3 \\ COH_2Cl \\ COO+C_4H_9 \\ COCH_2Cl \\ COCH_2C$	
co—o—	co—o—	co—o—	co—o—	
mynn (CI CI	CI	CI	
CF3		CI	CI CF ₃	
Cl	CI			
72/2/ S	No. of the second secon	co	CO—CH ₃	
CO NO_2	CO—CF3	COCI	co—o—	
CO-O-CH3	CO-O-CF3	co-o-Cı	CO-O-NO2	

TABLE 4-continued

	R ₄ subst	ituents	
R_4	R_4	R_4	R_4
0-0	CO-O_CH ₃	co-o Cl	CO-O_CF3
CO-O NO2	CO-O OCH3	regarded O	zrer i
Zzzzz O	Ser Br	22-2	ZZZ CI

TABLE 5

		$R_5(R_6)$ substituents	
R ₅ (R ₆)	$R_5(R_6)$	$R_5(R_6)$	$R_5(R_6)$
Н		CH ₂ C≕CH	when
СН3	- Amm	CH ₂ CH=CCl ₂	CI
C ₂ H ₅		CH ₂ C=C—I	ry F
n-C ₃ H ₇	t-C ₄ H ₉	$\mathrm{CH_{2}OCH_{3}}$	CI
i-C ₃ H ₇	СН—СН2	CH ₂ OCH ₂ CH ₃	rodra.
n-C ₄ H ₉	С=СН	CH₂CH₂OCH₃	N CI
i-C ₄ H ₉	CH₂CH≔CH₂	CH ₂ CH ₂ OCH ₂ CH ₃	

60

TABLE 5-continued

CR_5R_6		

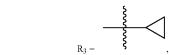
The present invention is also explained by the following 10 compounds listed in Table 6 to Table 23, but without being restricted thereby.

I 15 20

Table 6: in general formula I, R₂=Cl, 25 $R_3 = R_4 = R_6 = H$, the substituent R_1 refers to Table 6, the representative compounds are coded as 1-65.

TABLE 6

17:	IDLE 0
No.	R ₁
1 2 3 4 5 6 7 8 9	$\begin{array}{c} F \\ Cl \\ Br \\ I \\ CH_3 \\ C_2H_5 \\ n\text{-}C_3H_7 \\ i\text{-}C_3H_7 \\ i\text{-}C_4H_9 \\ i\text{-}C_4H_9 \\ i\text{-}C_4H_9 \\ t\text{-}C_4H_9 \end{array}$
12	
13	
14	
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29	$\begin{array}{c} \mathrm{CH_2Cl} \\ \mathrm{CHCl_2} \\ \mathrm{CCl_3} \\ \mathrm{CHF_2} \\ \mathrm{CHBr_2} \\ \mathrm{CF_3} \\ \mathrm{CH(CH_3)F} \\ \mathrm{CH(CH_3)F} \\ \mathrm{CH(CH_3)Br} \\ \mathrm{CH(CH_3)Br} \\ \mathrm{CH(CH_3)pr} \\ \mathrm{OCH_2CH=CH_2} \\ \mathrm{OCH_2CH=CH_2} \\ \mathrm{OCH_2CH=CHCl} \\ \mathrm{OCH_2C=CH} \\ \mathrm{OCH_2C=CH} \\ \mathrm{OCH_2C=CCH} \\ \mathrm{OCH_2C=CCH_3} \end{array}$


TABLE 6-continued

	No.	R_1
	30	OSO ₂ CH ₃
15	31	OCH ₃
15	32	OC_2H_5
	33	OCH ₂ F
	34	OCF ₃
	35	SCH ₃
	36	$SOCH_3$
20	37	SO_2CH_3
	38	СООН
	39	COOCH ₃
	40	$COOC_2H_5$
	41	CONH ₂
	42	CONHCH ₃
25	43	CONHCN
	44	CONHCH ₂ CN
	45	CON(CH ₃) ₂
	46	NH ₂
	47	NHCH ₃
20	48	NHC ₂ H ₅
30	49	N(CH ₃) ₂
	50	N(C ₂ H ₅) ₂
	51	NHCH ₂ CN
	52	NHOCH ₃
	53	NHCOCH ₃
35	54	NHCOOC ₂ H ₅
	55	N(CH ₃)NH2
	56	$NHN(CH_3)_2$
	57	CH ₂ OCH ₃
	58	CH ₂ OCH ₂ CH ₃
	59	CH ₂ CH ₂ OCH ₃
40	60	CH ₂ CH ₂ OCH ₂ CH ₃
	61	CH(CH ₃)SCH ₃
	62	CH(CH ₃)SOCH ₃
	63	CH(CH ₃)SO ₂ CH ₃
	64	CH(CH ₃)OH
	65	CH(CH ₃)OCOCH ₃
45		

Table 7: in general formula I, R_2 =Cl, R_3 =Cl, $R_4 = R_5 = R_6 = H$, the substituent R_3 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 66-130.

Table 8: in general formula I, R₂=Cl, R₃=CH₃, $R_4 = R_5 = R_6 = H$, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the 55 representative compounds are coded as 131-195.

Table 9: in general formula I, R₂=Cl,

 $_{65}\ R_4\!\!=\!\!R_5\!\!=\!\!R_6\!\!=\!\!H,$ the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 196-260.

40

50

$$R_3 = \frac{1}{8}$$

 R_4 = R_5 = R_6 =H, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the 10 representative compounds are coded as 261-325.

Table 11: in general formula I, R₂=Cl,

$$R_3 = \frac{1}{2}$$

 R_4 = R_5 = R_6 =H, the substituent R_1 is e consistent with 20 those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 326-390.

Table 12: in general formula I, R_2 —CI, R_3 — R_4 — R_5 —H, R_6 —CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 391-455,

Table 13: in general formula I, R_2 —Cl, R_3 —Cl, R_4 —R₅—H, R_6 —CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 456-520.

Table 14: in general formula I, R_2 —CI, R_3 —CH₃, R_4 — R_5 —H, R_6 —CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 521-585.

Table 15: in general formula I, R₂=Cl,

$$R_3 = \frac{1}{2}$$

 R_4 = R_5 =H, R_6 CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 586-650.

Table 16: in general formula I, R₂=Cl,

$$R_3 =$$

 R_4 — R_5 —H, R_6 — CH_3 , the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, 55 the representative compounds are coded as 651-715.

Table 17: in general formula I, R₂—Cl,

 R_4 = R_5 =H, R_6 = CH_3 , the substituent R_1 is consistent with 65 those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 716-780.

18

Table 18: in general formula I, R_2 —Cl, R_3 — R_4 —H, R_5 — R_6 —CH₃, the substituent R_1 is consistent with those, in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 781-845.

Table 19: in general formula I, R_2 —Cl, R_3 —Cl, R_4 —H, R_5 — R_6 —CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 846-910.

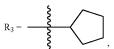

Table 20: in general formula I, R_2 —CI, R_3 —CH₃, R_4 —H, R_5 — R_6 —CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 911-975.

Table 21: in general formula I, R₂—Cl,

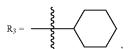

 R_4 =H, R_5 = R_6 =CH₃, the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 976-1040.

Table 22: in general formula I, R₂—Cl,

 R_4 —H, R_5 — R_6 — CH_3 , the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 1041-1105.

Table 23: in general formula I, R₂—Cl,

 R_4 —H, R_5 — R_6 — CH_3 , the substituent R_1 is consistent with those in Table 6 and corresponding to 1-65 in table 6 in turn, the representative compounds are coded as 1106-1170.

In general formula I, R_1 =CH₃, R_2 =Cl, R_3 = R_5 = R_6 H, the substituent R_4 refers to Table 24, the representative compounds are coded as 117-1310.

TABLE 24

TABLE 24			
No.	R_4		
1171	S-i-C ₃ H ₇		
1172	OH		
1173	—C(=O)H		
1174	CBr_3		
1175	CH ₃		
1176	C_2H_5		
1177	n-C ₃ H ₇		
1178	i-C ₃ H ₇		
1179	$n-C_4H_9$		
1180	$i-C_4H_9$		
1181	$t-C_4H_9$		
1182	CI_3		
1183	CH_2Br		
1184	CHF ₂		
1185	CHBr ₂		
1186	CF ₃		
1187	CH ₂ Cl		
	_		

20
TABLE 24-continued

	TABLE 24-continued			TABLE 24-continued
No.	R_4		No.	R_4
1188	CHCl ₂		1266	$SN(C_2H_5)_2$
1189	CCl ₃	5		
1190	CH ₂ F		1267	<u> </u>
1191	OCH ₃			_{
1192 1193	OC ₂ H ₅			3
1193	$OCH(CH_3)_2$ $OC(CH_3)_3$			ξ
1195	OCF ₃	10		
1196	OCH ₂ CF ₃	10	1268	\$ ^
1197	OCH ₂ F			\
1198	OCHF ₂			{ \
1199	SCH ₃			\$
1200 1201	SC ₂ H ₅ SCH ₂ CH≔CH ₂		1269	c c
1201	CH=CH ₂	15	1209	₹ /
1203	CH ₂ CH=CH ₂			- \
1204	CH ₂ CH=CCl ₂			
1205	C≡CH			•
1206	CH ₂ C≡CH		1270	5 —
1207	CH ₂ C≡C—I	20	12.0	§ / \
1208 1209	CH ₂ OCH ₃ CH ₂ OCH ₂ CH ₃			-} \
1210	CH ₂ OCH ₂ CH ₃ CH ₂ CH ₂ OCH ₃			{ \/
1211	CH ₂ CH ₂ OCH ₂ CH ₃			,
1212	CH ₂ OCH ₂ Cl		1271	1
1213	CH ₂ OCH ₂ CH ₂ Cl		*	co—o—
1214	CH ₂ CH ₂ OCH ₂ Cl	25		7
1215	CH ₂ SCH ₃		1272	^
1216 1217	CH ₂ SCH ₂ CH ₃ CH ₂ CH ₂ SCH ₃		12/2	co—o—
1217	CH ₂ CH ₂ SCH ₃ CH ₂ CH ₂ SCH ₂ CH ₃			
1219	CH ₂ SCH ₂ Cl			•
1220	CH ₂ SCH ₂ CH ₂ CI	30	1273	\sim
1221	CH ₂ CH ₂ SCH ₂ Cl			co—o—
1222	$SOCH_3$			
1223	SOC ₂ H ₅			
1224 1225	SOCF ₃ SOCH ₂ CF ₃		1274	
1226	SO ₂ CH ₃	2.5	12/4	/ \
1227	$SO_2C_2H_5$	35		co—o—〈
1228	SO_2CF_3			
1229	$SO_2CH_2CF_3$			
1230	SO ₂ NHCOCH ₃		1275	
1231 1232	SO_2NHCH_3 $SO_2N(CH_3)_3$			(
1233	CONHSO ₂ CH ₃	40		~~/ \ /
1234	COCH ₃			Jun
1235	COC_2H_5			/
1236	CO-n-C ₃ H ₇			
1237	CO-i-C ₃ H ₇		1276	<u> </u>
1238	CO-n-C ₄ H ₉	45		CI
1239 1240	CO-i-C ₄ H ₉	43		~~~
1240	CO-t-C ₄ H ₉ COCF ₃			\range
1242	COCH ₂ Cl			/
1243	COOCH ₃		1277	Cl
1244	$COOC_2H_5$		14//	
1245	COO-n-C ₃ H ₇	50		\rightarrow
1246 1247	COOCE			/ \
1247 1248	COOCF ₃ COOCH ₂ CH ₂ Cl			20 /
1248	COOCH ₂ CH ₂ CI COOCH ₂ CF ₃			~~~~ <u>\</u>
1250	CH ₂ COOCH ₃			Jun
1251	CH ₂ COOC ₂ H ₅	55		•
1252	CH ₂ COCH ₃	55	1278	
1253	CH ₃ COC ₂ H ₅			/
1254	CONHC H			2 / W
1255 1256	CONHC ₂ H ₅ CONH-t-C₄H ₉			- w/w
1257	$CON_1-C_4N_9$ $CON(CH_3)_2$			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1258	$CON(C_2H_5)_2$	60		, CI
1259	COOCH ₂ CH=CH ₂		1279	
1260	COOCH ₂ C=CH		12/9	/ \
1261	COOCH ₂ OCH ₃			CF_3
1262	COOCH ₂ CH ₂ OCH ₃			- ~~/
1263 1264	SNHCH ₃	65		June .
1264	$SNHC_2H_5$ $SN(CH_3)_2$	0.5		•
1203	DIN(C113/2			

	Tribbb 24 continued			II IDEE 24 continued
No.	R_4		No.	R ₄
1280		5	1292	CO—CF ₃
	www.	10	1293	co—CI
1281	Cl	10	1294	co—o—
	200 CI	15	1295	
1282	CI	20	1296	CO—O———CH ₃
	CF ₃		1297	CO—O—CF ₃
1283	CI	25	1297	co—o———cı
	CI CF3	30	1298	$CO-O-NO_2$
1284	CI		1299	00-0
1285	N N	35	1300	CO—OCH ₃
	socker 1	40	1301	co—o
1286	rrrrrr S		1202	CI
1287	73	45	1302	CO—O CF ₃
1288		50	1303	CO—O NO ₂
	Z-Z-Z-Z-CI		1304	CO—O OCH3
1289	co	55	1305	
1290	CO—CH3	60		records I
1291	CO NO_2		1306	recent in the second of the se
	\ <u></u> /	65		's

No.	R_4	_
1307	procession CI	5
1308	process O Br	10
1309	722/2 C	15
1310	ZZZZZZ CI	

Table 25: in general formula I, $R_1 = C_2H_5$, $R_2 = Cl$, $R_3 = R_5 = R_6 = H$, the substituent R_4 is consistent with those in Table 24 and corresponding to 1171-1310 in table 6 in turn, the representative compounds are coded as 1311-1450. $_{30}$

The salts of some compounds of the present invention are listed in Table 26, but without being restricted thereby.

TABLE 26

No.	Structure	35
1451	N HCI O	40
1452		45
	N HO3S O	50
1453	$\begin{array}{c c} N & \bullet H_3PO_4 \\ \hline & N \\ & N \\ & H \end{array}$	55
1454	N N OO OO O	60
	Cl •CF ₃ COOH	65

	TABLE 26-continued
No.	Structure
1455	$\begin{array}{c c} N & \bullet H_2SO_4 \\ \hline \\ N \\ H \end{array}$
1456	$\begin{array}{c c} & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & & \\ &$
1457	$\begin{array}{c c} N & \bullet H_3PO_4 \\ \hline \\ N \\ H \end{array}$
1458	F N HCI O
1459	$\bigcap_{\mathrm{Cl}} \bigvee_{\mathrm{H}} \bigcap_{\mathrm{CF_3COOH}} \bigcirc$
1460	
	F HO ₃ S' O
1461	$\begin{array}{c c} N & N & O \\ \hline & N & \\ & N & \\ & &$
1462	$\begin{array}{c c} F & & & \\ \hline \\ F & & \\ \hline \\ C1 & & \\ \end{array}$
1463	N HCl O

oxalic acid

No.	Structure		No.	Structure
1464	$F \longrightarrow V \longrightarrow $	5	1472	F N N N N O O
1465	N ·HO ₃ S	15	1473	oxalic acid
1466	F N N N O	20	1474	benzoic acid F N N N N N N N N N N N N N N N N N N
1467	$ \begin{array}{c c} & \text{if} \\ & \text{CI} & \text{*CF}_3\text{COOH} \\ \hline & \text{N} & \text{*H}_2\text{SO}_4 & \text{O} \\ & \text{H} & \text{O} \end{array} $	30	1475	benzoic acid
1468	$F \xrightarrow[K]{N} N \xrightarrow[H]{N} O$ $F \xrightarrow[H]{N} O$ O O O O O O O O O	35 40	1476	maleic acid maleic acid
1469	N N N N N N N N N N N N N N N N N N N	45 50	1477	maleic acid
1470	F N N N N N N N N N N N N N N N N N N N	55	1478	CI Citric acid
1471	N N N O O	60		F Cl citric acid

The compounds having general formula (I) of the invention can be prepared according to the following schemes, the definitions of substituents are as defined above:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_1
 R_1
 R_1
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8
 R_8
 R_9
 R_9

The compounds of general formula I can be obtained by reaction of intermediates II and III under basic condition.

The proper base mentioned may be selected from potassium hydroxide, sodium hydroxide, sodium carbonate, 30 potassium carbonate, sodium bicarbonate, triethylamine, pyridine, sodium methoxide, sodium ethoxide, sodium hydride, potassium tert-butoxide or sodium tert-butoxide and so on.

The reaction was earned out in proper solvent and the proper solvent mentioned may be selected from tetrahydro-furan, 1,4-dioxane, acetonitrile, toluene, xylene, benzene, DMF, N-methyl pyrrolidone, DMSO, acetone or butanone and so on.

The proper temperature mentioned is from room temperature to boiling point of the solvent, normal temperature is from $20 \text{ to } 100^{\circ} \text{ C}$.

The reaction time is in the range of 30 minutes to 20 hours, generally being 1-10 hours. 45

Intermediates II can be prepared according to the method described in JP2000007662, U.S. Pat. No. 4,977,264, U.S. Pat. No. 6,090,815, US20040092402, JP09124613, U.S. Pat. No. 5,468,751, U.S. Pat. No. 4,985,426, U.S. Pat. No. 504,845,097, Recueil des Travaux Chimiques des Pays-Bas (1978), 97(11), Pages 288-92.

The preparation of intermediates III refers to the three methods shown as follows according to the different definition of R_5 and R_6 .

Intermediates III, when R₄—R₅—R₆—H, are commercially available, or are prepared according to the method described in CN1312250A;

Intermediates III, when R_4 —H, R_5 and R_6 (\neq H) defined as above, are prepared according to the method described in Farmaco, Edizione Scientifica (1965), 20(6), 456-62: JP59204177, etc.;

Intermediates III, when $R_4 \neq H$, are prepared from the $_{65}$ intermediates ($R_4 = H$) according to the method described in WO2004093800A:

$$X-R_4$$
 R_5
 R_6
 R_4
 R_5
 R_6
 R_6
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_8
 R_8
 R_8

Wherein, X is halogen, methylsulfonyl or tosyl.

The preparation method of salts of the compounds having general formula I:

The preparation method of salts based on pyrimidinamine moiety:

The corresponding salts having general formula I-1 can be prepared by reaction of the compounds having general formula I with corresponding organic acids or inorganic acids, as shown in the following.

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6
 R_7
 R_8
 R_9
 R_9

In addition, in general formula I, the salts can also formed based on nitrogen atom of pyrimidine ring, the preparation method refers to DE19647317, JP2001504473, U.S. Pat. No. 5,925,644, WO9822446 and ZA9710187, etc.

The reaction forming salts of compounds having general formula I-1 with organic acids or inorganic acids can be carried out at room temperature to boiling point of the solvent, normal temperature is from 20 to 100° C. The reaction time is in the range of 30 minutes to 20 hours, generally being 1-10 hours. The proper solvent mentioned may be selected from water, methanol, ethanol, isopropanol, benzene, toluene, xylene, acetone, ethyl methyl ketone, methyl isobutyl ketone, chloroform, dichloromethane, methyl acetate, ethyl acetate, tetrahydrofuran, 1,4-dioxane, DMF, N-methyl pyrrolidone or DMSO and so on.

The acids, which can be used to form salts with compounds having general formula I-1, includes hydrochloric acid, sulphuric acid, phosphorous acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methanesulfonic acid, p-toluenesulfonic acid, benzoic acid, phthalic acid, maleic acid, sorbic acid, malic acid or citric acid, etc. The further

preferred acids are hydrochloric acid, sulphuric acid, phosphorous acid, trifluoroacetic acid, methanesulfonic acid or p-toluenesulfonic acid.

Although the compounds having general formula I and some compounds reported in prior art are both belong to 5 substituted pyrimidines, there are still some obvious differences in structure between them. It is due to these differences in structure that lead to compounds of present invention with better fungicidal and/or insecticidal/acaricidal and antitumor activities.

The compounds of general formula I show excellent activity against both many plant pathogens/diseases in agricultural and other fields, and insects/mites, at the same time, they also have some antitumor activity. Therefore the technical scheme of the present invention also includes the uses of the compounds having general formula I or their salts to prepare fungicides, insecticides/acaricides in agricultural and other fields and to prepare antitumor agents in pharmaceutical fields.

The present invention is explained by the following 20 examples of plant disease, but without being restricted thereby.

The compounds of general formula I can be used to control these plant diseases: Oomycete diseases, such as downy mildew (cucumber downy mildew, rape downy mil- 25 dew, soybean downy mildew, downy mildew of beet, downy mildew of sugarcane, tobacco downy mildew, pea downy mildew, vegetable sponge downy mildew, chinese wax gourd downy mildew, muskmelon downy mildew, chinese cabbage downy mildew, spinach downy mildew, radish 30 downy mildew, grape downy mildew, onion downy mildew), white rust (rape white rust, chinese cabbage white rust), damping-off disease (rape damping-off, tobacco damping-off, tomato damping-off, pepper damping-off, eggplant damping-off, cucumber damping-off, cotton damping-off), 35 pythium rot (pepper soft stale disease, vegetable sponge cottony leak, chinese wax gourd cottony leak), blight (broad bean phytophthora blight, cucumber phytophthora blight, pumpkin phytophthora rot, chinese wax gourd phytophthora blight, watermelon phytophthora blight, muskmelon phy- 40 tophthora blight, pepper phytophthora blight, chinese chives phytophthora blight, carlic phytophthora blight, cotton phytophthora blight), late blight (potato late blight, tomato late blight) and so on; diseases caused by Deuteromycotina, such as wilt disease (sweet potato fusarium wilt, cotton fusarium 45 wilt disease, sesame wilt disease, fusarium wilt disease of costarbean, tomato fusarium wilt, bean fusarium wilt, cucumber fusarium wilt, vegetable sponge fusarium wilt, pumpkin fusarium wilt, chinese wax gourd fusarium wilt, watermelon fusarium wilt, muskmelon fusarium wilt, pep- 50 per fusarium wilt, broad bean fusarium wilt, fusarium wilt disease of rape, fusarium wilt disease of soybean), root rot (pepper root rot, eggplant root rot, bean fusarium root-rot, cucumber fusarium root rot, balsam pear fusarium root rot, cotton black root rot, broad bean thielaviopsis root rot), 55 drooping disease (cotton soreshin, sesame soreshin, pepper rhizoctonia rot, cucumber rhizoctonia rot, chinese cabbage rhizoctonia rot), anthracnose (sorghum anthracnose, cotton anthracnose, kenaf anthracnose, jute anthracnose, flax anthracnose, tobacco anthracnose, mulberry anthracnose, 60 pepper anthracnose, eggplant anthracnose, bean anthracnose, cucumber anthracnose, balsam pear anthracnose, summer squash anthracnose, chinese wax gourd anthracnose, watermelon anthracnose, muskmelon anthracnose, litchi anthracnose), verticillium wilt (cotton verticiliium 65 wilt, verticillium wilt of sunflower, tomato verticillium wilt, pepper verticillium wilt, eggplant verticillium wilt), scab

30

(summer squash scab, chinese wax gourd scab, muskmelon scab), gray mold (cotton boll gray mold, kenaf gray mold, tomato gray mold, pepper gray mold, bean gray mold, celery gray mold, spinach gray mold, kiwi fruit gray mold rot), brown spot (cotton brown spot, jute brown spot, beet sercospora leaf spot, peanut brown spot, pepper brown leaf spot, chinese wax gourd corynespora leaf spot, soybean brown spot, sunflower brown spot, pea ascochyta blight, broad bean brown spot), black spot (flax black spot, rape alternaria leaf spot, sesame black spot, sunflower alternaria leaf spot, costarbean alternaria leaf spot, tomato nail head spot, pepper black fruit spot, eggplant black spot, bean leaf spot, cucumber alternaria blight, celery alternaria black leaf spot, carrot alternaria black rot, carrot leaf blight, apple alternaria rot, peanut brown spot), spot blight (tomato septoria leaf spot, pepper septoria leaf spot, celery late blight), early blight (tomato early blight, pepper early blight, eggplant early blight, potato early blight, celery early blight), ring spot (soybean zonate spot, sesame ring spot, bean zonate spot), leaf blight (sesame leaf blight, sunflower leaf blight, watermelon alternaria blight, muskmelon alternaria spot), basal stem rot (tomato basal stem rot, bean rhizoctonia rot), and others (corn northern leaf spot, kenaf damping-off, rice blast, millet black sheath, sugarcane eye spot, cotton aspergillus boll rot, peanut crown rot, soybean stem blight, soybean black spot, muskmelon alternaria leaf blight, peanut web blotch, tea red leaf spot, pepper phyllosticta blight, chinese wax gourd phyllosticta leaf spot, celery black rot, spinach heart rot, kenaf leaf mold, kenaf brown leaf spot, Jute stem blight, soybean cercospora spot, sesame leaf spot, costarbean gray leaf spot, tea brown leaf spot, eggplant cercospora leaf spot, bean cercospora leaf spot, balsam pear cercospora leaf spot, watermelon cercospora leaf spot, jute dry rot, sunflower root and stem rot, bean charcoal rot, soybean target spot, eggplant corynespora leaf spot, cucumber corynespora target leaf spot, tomato leaf mold, eggplant fulvia leaf mold, broad bean chocolate spot) and so on; diseases caused by Basidiomycete, such as rust (wheat stripe rust, wheat stem rust, wheat leaf rust peanut rust, sunflower rust, sugarcane rust, chinese chives rust, onion rust, millet rust, soybean rust), smut (corn head smut, corn smut, sorghum silk smut, sorghum loose kernel smut, sorghum hard smut, sorghum smut, millet kernel smut, sugarcane smut, bean rust), and others (for example, wheat sheath blight and rice sheath blight) and so on; diseases caused by Ascomycete, such as powdery mildew (wheat powdery mildew, rape powdery mildew, powdery mildew of sesame, powdery mildew of sunflower, beet powdery mildew, eggplant powdery mildew, pea powdery mildew, vegetable sponge powderery mildew, pumpkin powdery mildew, summer squash powdery mildew, chinese wax gourd, muskmelon powdery mildew, grape powdery mildew, broad bean powdery mildew), sclerotinia rot (flax sclertiniose, rape sclertiniose, soybean sclertiniose, peanut sclertiniose, tobacco sclerotinia rot, pepper sclerotinia rot, eggplant sclerotinia rot, bean sclerotinia rot, pea sclerotinia rot, cucumber sclerotinia rot, balsam pear sclerotinia rot, chinese wax gourd sclerotinia rot, watermelon sclerotinia disease, celery stem rot), scab (apple scab, pear scab) and so on. Especially, the compounds of the present invention exhibit very good control against corn southern rust, rice blast, cucumber gray mold and cucumber downy mildew at very low doses.

The compounds of general formula I can be used to control these insects: Coleoptera, such as *Acanthoscelides* spp., *Acanthoscelides obtectus*, *Agrilus planipennis*, *Agriotes* spp., *Anoplophora glabripennis*, *Anthonomus* spp., *Anthonomus grandis*, *Aphidius* spp., *Apion* spp., *Apogonia*

spp., Atacnius spretulus, Atomaria linearis, pygmy mangold beetle, Aulacophore spp., Bothynoderes punctiventris, Bruchus spp., Bruchus pisorum, Cacoesia, Cacoesia spp., Caliosobruchus maculatus, Carpophilus hemipteras, Cassida vittata, Cerosterna spp., Cerotonia, Cerotoma spp., Cerotoma trifur cata, Ceutorhynchus spp., Ceutorhynchus assimilis, cabbage seedpod weevil, Ceutorhynchus napi, cabbage curculio, Chaetocnema spp., Colaspis spp., Conoderus scalaris, Conoderus stigmosus, Conotrachelus nenuphar, Cotinus nitidis, Green June beetle, Crioceris asparagi, Cryptolestes ferruginous, rusty grainbeetle, Cryptolestes pusillus, Cryptolestes turcicus Turkish grain beetle, Ctenicera spp., Curculio spp., Cyclocephala spp., Cylindrocpturus adspersus, sunflower stem weevil, Deporaus marginatus, mango leaf-cutting weevil, Dermestes lardarius, Dermestes maculates, Diabrotica spp., Epilachna varivestis, raustinus cubae, Hylobius pales, pales weevil, Hypera spp., Hypera postica, Hyperdoes spp., Hyperodes weevil, Hypothenemus hampei, Ips spp., engravers, Lasio- 20 derma serricorne, Leptinotarsa decemlineata, Liogenys fuscus, Liogenys suturalis, Lissorhoptrus oryzophilus, Lyctus spp., powder post beetles, Maecolaspis joliveti, Megascelis spp., Melanotus communis, Meligethes spp., Meligethes aeneus, blossom beetle, Melolontha melolontha, Oberea 25 brevis, Oberea linearis, Oryctes rhinoceros, date palm beetle, Oryzaephilus mercator, merchant grain beetle, Oryzaephilus surinamensis, sawtoothed grain beetle, Otiorhynchus spp., Oulema melanopus, cereal leafbeetle, Oulema oryzae, Pantomorus spp., Phyliophaga spp., Phyliophaga 30 cuyabana, Phyllotreta spp., Phynchites spp., Popillia japonica, Prostephanus truncates, larger grain borer, Rhizopertha dominica, lesser grain borer, Rhizolrogus spp., Eurpoean chafer, Rhynehophorus spp., Scolytus spp., Shenophorus spp. Sitona lincatus, pea leaf weevil, Sitophilus 35 spp., Sitophilus granaries, granary weevil, Sitophilus oryzae, rice weevil, Stegobium paniceum, drugstore beetle, Tribolium spp., Tribolium castaneum, (red flour beetle, Tribolium confusum, confused flour beetle, Trogoderma variabile, warehouse beetle and Zabrus tenebioides.

Dermaptera.

Dictyoptera, such as Blattella germanica, German cockroach, Blatta orientalis, Parcoblatta pennylvanica, Periplaneta americana, American cockroach, Periplaneta australoasiae, Australian cockroach, Periplaneta brunnca, 45 brown cockroach, Periplaneta fuliginosa, smokybrown cockroach, Pyncoselus suninimensis, Surinam cockroach and Supella longipalpa, brownbanded cockroach)).

Diptera, such as Aedes spp., Agromyza frontella, alfalfa blotch leafminer, Agromyza spp., Anastrepha spp., Anas- 50 trepha suspensa, Caribbean fruit fly, Anopheles spp., Batrocera spp., Bactrocera cucurbitae, Bactrocera dorsalis, Ceratitis spp., Ceratitis capitata, Chrysops spp., Cochliomyia spp., Contarinia spp., Culex spp., Dasineura spp., Dasineura brassicae, Delia spp.), Delia platura, seedcorn 55 maggot), Drosophila spp., Fannia spp., Fannia canicularis, little house fly, Fannia scalaris, Gasterophilus intestinalis, Gracillia perseae, Haematobia irritans, Hylemyia spp., root maggot, Hypoderma lineatum, common cattle grab, Liriomyza spp., Liriomyza brassica, serpentine leafminer, 60 Melophagus ovinus, Musca spp., muscid fly, Musca autumnalis, face fly, Vusca domestica, house fly, Oestrus ovis, sheep bot fly, Oscinella frit, Pegomyia betae, (beet leafminer, Phorbia spp., Psila rosae, carrotrust fly, Rhagoletis cerasi, cherry fruit fly, Rhagoletis pomonella, apple maggot, 65 Sitodiplosis mosellana, orange wheat blossom midge, stomoxys calcitruns, stable fly, Tahanus spp. and Tipula spp.

Hemiptera, such as Acrosternum hilare, green stink bug, Blissus leucopterus, chinch bug, Calocoris norvegicus, potato mirid, Cimex hemipterus, tropical bed bug, Cimex lectularius, bed bug, Daghertus fasciatus, Dichelops furcatus, Dysdercus suturellus, cotton stainer, Edessa meditabunda, Eurygaster maura, cereal bug, Euschistus heros, Euschistus servus, brown stink bug, Helopeltis antonii, Helopeltis theivora, tea blight plantbug, Lagynotomus spp., Leptocorisa oratorius, Leptocorisa varicomi, Lygus spp., plant bug, Lygus hesperus, western tarnished plant bug, Maconellicoccus hirsutus, Neurocolpus longirostris, Nezara viridula, southern green stink bug, PhyLocoris spp., Phytocoris californicus, Phytocoris relativus, Piezodorus guildingi, Poecilocapsus lineatus, fourlined plant bug, Psallus vaccinicola, Pseudacysta perseae, Scaptocoris castanea and Triatoma spp., bloodsuckingeonenose bug, kissing

Homoptera, such as Acrythosiphonpisum, pea aphid, Adelges spp., adelgids, Aleurodes proletella, Aleurodicus disperses, Aleurothrixus flecosus, woolly whitefly, Aluacaspis spp., Amrasca bigutella bigutella, Aphropbora spp., leafhopper, Aonidiella aurantii, California red scale, Aphis spp., Aphis gossypii, cotton aphid, Aphis pomi, apple aphid, Aulacorthitm solan, foxglove aphid, Bemisia spp., Bemisia argentifolii, Bemisia tabaci, sweetpotato whitefly, Brachycolus noxius, Russian aphid, Brachycorynelia asparagi, asparagus aphid, Brevennia rehi, Brevicoryne brassicae, Ceroplastes spp., Ceroplastes rubens, red wax scale, Chionaspis spp., Chrysomphalus spp., Coccus spp., Dysaphis plantaginea, rosy apple aphid, Empoasca spp., Eriosoma lanigerum, woolly apple aphid, Icerya purchasi, cottony cushion scale, Idioscopus nitidulus, mango leafhopper, Laodelphax striaiellus, smaller brown planthopper, Lepidosaphes spp., Macrosiphum spp., Macrosiphum euphorbiae, potato aphid, Macrosiphum granarium, (English grain aphid, Macrosiphum rosae, rose aphid, Macrosteles quadrilineatus, aster leafhopper, Mahanarva frimbiolata, Metopolophium dirhodum, rose grain aphid, Midis longicornis, Myzus persicae, green peach aphid, Nephotettix spp., 40 Nephotettix cinctipes, green leafhopper, Nilaparvata lugens, brown planthopper, Parlatoria pergandii, chaff scale, Parlatoria ziziphi, ebony scale, Peregrinus maidis, corn delphacid, Philaenus spp., Phylloxera vitifoliae, grape phylloxera, Physokermes piceae, spruce bud scale, Planococcus spp., Pseudococcus spp., Pseudococcus brevipes, pine apple mealybug, Quadraspidiotus pemiciosus, San Jose scale, Rhapalosiphum spp., Rhapalosiphum maida, corn leaf aphid, Rhapalosiphum padi, oatbird-cherry aphid, Saissetia spp., Saissetia oleae, Schizaphis graminum, greenbug, Sitobion avenge, Sogatella furcifera, white-backed planthopper, Therioaphis spp., Toumeyella spp., Toxoptera spp., Trialeurodes spp., Trialeurodes vaporariorum, greenhouse whitefly, Trialeurodes abutiloneus, bandedwing whitefly, Unaspis spp., Unaspis yanonensis, arrowhead scale and Zulia entre-

Hymenoptera, such as Acromyrrmex spp., Athalia rosae, Atta spp., leafcutting ants, Camponotus spp., carpenter ant, Diprion spp., sawfly, Formica spp., Iridomyrmex humilis, Argentineant, Monomorium ssp., Monomorium minumum, little black ant, Monomorium pharaonis, haraoh ant, Neodiprion spp., Pogonomyrmex spp., Polistes spp., paper wasp, Solenopsis spp., Tapoinoma sessile, odorous house ant, Tetranomorium spp., pavement ant, Vespula spp., yellow jacket and Xylocopa spp., carpenter bee.

Isoptera, such as Coptotermes spp., Coptotermes curvignathus, Coptotermes frenchii), Coptotermes formosanus, Formosan subterranean termite, Cornitermes spp., nasute termite, Cryptotermes spp., Heterotermes spp., desert subterranean termite, Heterotermes aureus, Kalotermes spp., Incistitermes spp., Macrotermes spp., fungus growing termite, Marginitermes spp., Microcerotermes spp., harvester termite, Microtermes obesi, Procornitermes spp., Reticulistermes spp., Reticulitermes banyulensis, Reticulitermes grassei, Reticulitermes flavipes, Reticulitermes hageni, Reticulitermes hesperus, Reticulitermes santonensis, Reticulitermes speratus, Reticulitermes tibialis, Reticulitermes virginicus, Schedorhinotermes spp. and Zootermopsis spp.

Lepidoptera, such as Achoea janata, Adoxophyes spp., Adoxophyes orana, Agrotis spp., Agrotis ipsilon, Alabama argillacea, cotton leafworm, Amorbia cuneana, Amyelosis transitella, navel orangeworm, Anacamptodes defectaria, Anarsia lineatella, peach twig borer, Anomis sabulijera, jute 15 looper, Anticarsia gemmatalis, velvetbean caterpillar, Archips argyrospila) (fruit tree leafroller, Archips rosana, rose leaf roller, Ar gyrotaenia spp., tortricid moths, Argyrotaenia citrana, orange tortrix, Autographa gamma, Bonagota cranaodes, Borbo cinnara, rice leaf folder, Buccula- 20 trix thurberiella, cotton leafperforator, Caloptilia spp., Capua reticulana, Carposina niponensis, peach fruit moth, Chilo spp., Chlumetia transversa, mango shoot borer, Choristoneura rosaceana, oblique banded leaf roller, Chrysodeixis spp., Cnaphalocerus medinalis, grass leafroller, 25 Colias spp., Conpomorpha cramerella, Cossus cossus, Crambus spp., Sod webworms, Cydia funebrana, plum fruit moth, Cydia molesta, oriental fruit moth, Cydia nignicana, pea moth, Cydia pomonella, codling moth, Darna diducta, Diaphania spp., stem borer, Diatr aea spp., stalk borer, 30 Diatraea saccharalis, sugarcane borer, Diatraea graniosella, southwester corn borer, Earias spp., Earias insulata, Egyptian bollworm, Earias vitella, rough northern bollworm, Ecdytopopha aurantianum, Elasmopalpus lignosellus, lesser cornstalk borer, Eprphysias postruttana, light 35 brown, apple moth, Ephestia spp., Ephestia cautella, almond moth, Ephestia elutella, tobbaco moth, Ephestia kuehniella, Mediterranean flour moth, Epimeces spp, Epinotia aporema, Erionota thrax, banana skipper, Eupoecilia ambiguella, grape berry moth, Euxoa auxiliaris, army cut- 40 worm, Feltia spp., Gortyna spp., Grapholita molesta, oriental fruit moth, Hedylepta indicata, bean leaf webber, Helicoverpa spp., Helicoverpa armigera, cotton bollworm, Helicoverpa zea, Heliothis spp., Heliothis virescens, tobacco budworm, Hellula undalis, cabbage webworm, Indarbela 45 spp. Keiferia lycopersicella, tomato pinworm, Leucinodes orbonalis, eggplant fruit borer, Leucoptera malifoliella, Lithocollectis spp., Lobesia botrana, grape fruit moth, Loxagrotis spp., Loxagrotis albicosta, western bean cutworm, Lymantria dispar, gypsy moth, Lyonetiaclerkella, apple 50 leafminer, Mahasena corbetti, oil palm bagworm, Malacosoma spp., tent caterpillars, Mamestra brassicae, cabbage armyworm, Maruca testulalis, Metisa plana, Mythimna unipuncta, true armyworm, Neoleucinodes elegantalis, small tomato borer, Nymphula depunctalis, rice caseworm, 55 Operophthera brumata, winter moth, Ostrinia nubilalis, European corn borer, Oxydia vesulia, Pandemis cerasana, common currant tortrix, Pandemis heparana, brown apple tortrix, Papilio demodocus, Pectinophora gossypiella, pink bollworm, Peridroma spp., Peridroma saucia, variegated 60 cutworm, Perileucoptera coffeelia, white coffee leafminer, Phthorimaea operculella, potato tuber moth, Phylloenisitis citrella, Phyllonorycter spp., Pieris rapae, imported cabbageworm, Plathypena scabra, Plodia interpunctella, Indian meal moth, Plutelia xylostella, diamondback moth, 65 Polychrosis viteana, grape berry moth, Prays endocarps, Prsys oleae, olive moth, Pseudaletia spp., Pseudaletia uni-

punctata, Pseudoplusia includens, soybean looper, Rachiplusia nu, Scirpophaga incertulas, Sesamia spp., Sesamia inferens, pink rice stemborer, Sesamia nonagrioides, Setora nitens, Sitotroga cerealella, Angoumois grain moth, Sparganothis pilleriana, Spodoptera spp., Spodoptera exigua, beet armyworm, Spodoptera fugiperda, fall armyworm, Spodoptera oridania, southern armyworm, Synanthedon spp., Thecla basilides, Thermisia gemmatalis, Tineola bisselliella, webbing clothes moth, Trichoplusia ni, cabbage looper, Tuts absoluta, Yponomeuta spp., Zeuzeracoffeae, red branch borer and Zeuzera pyrina, eopard moth.

Mallophaga, chewing lice, such as *Bovicola ovis*, sheep biting louse, *Menacanthus stramineus*, chicken body louse and *Menopon gallinea*, common hen house.

Orthoptera, such as *Anabrus simplex*, Mormon cricket, Gtyllotalpidae, mole cricket, *Locusta migratoria, Melanoplus* spp., *Microcentrum retinerve*, angular winged katydid, *Pterophylla* spp., *histocerca gregaria, Scudderia furcata*, fork tailed bush katydid and *Valanga nigricorni*.

sucking louse, such as *Haematopinus* spp., *Linognathus* ovillus, sheep louse, *Pediculus humanus capitis*, *Pediculus humanus humanus* and *Pthirus pubis*, crab louse.

Siphonaptera, such as *Ctenocephal ides canis*, dog flea, *Ctenocephalides felis*, cat flea and *Pulex irritans*) (human flea).

Thysanoptera, such as Frankliniella fusca, tobacco thrip, Frankliniella occidentalis, western flower thrips, Frankliniella shultzei, Frankliniella williamsi, corn thrip, Heliothrips haemorrhaidalis) (greenhouse thrip), Riphiphorothrips cruentatus, Scirtothrips spp, Scirtothrips cirri, citrus thrip, Scirtothrips dorsalis, yellow tea thrips, Taeniothrips rhopalantennalis and Thrips spp.).

Thysanura, bristletail, such as *Lepisma* spp, silverfish and *Thermobia* spp.

Acarina, mite and tick, such as Acarapsis woodi, tracheal mite of honeybee, Acarus spp., Acarus siro, grain mite, Aceria mangiferae, mango bud mite, Aculops spp., Aculops lycopersici, tomato russet mite, Aculops pelekasi, Aculus pelekassi, Aculus schlechtendali, apple rust mite, Amblyomma americanum, lone star tick, Boophilus spp., Brevipalpus obovatus, privet mite, Brevipalpus phoenicis, red and black flat mite, Demodex spp., mange mites, Dermacentor spp., Dermacentor variabilis, american dog tick, Dermatophagoides pteronyssinus, house dust mite, Eotetranycus spp., Eotetranychus carpini, yellow spider mite, Epitimeras spp., Eriophyes spp., Iodes spp., Metatetranycus spp., Notoedres cati, Oligonychus spp., Oligonychus coffee, Oligonychus ilicus, southernred mite, anonychus spp., Panonychus cirri, citrus red mite, Panonychus ulmi, European red mite, Phyllocoptruta oleivora, citrus rust mite, Polyphagotarsonemun latus, broad mite, Rhipicephalus sanguineus, brown dog tick, Rhizoglyphus spp., bulb mite, Sarcoptes scabiei, itch mite, Tegolophus perseaflorae, Tetranychus spp., Tetranychus urticae, twospotted spider mite and Varroa destructor.

Nematoda, such as *Aphelenchoides* spp., bud and leaf & pine wood nematode, *Belonolaimus* spp., sting nematodes, *Criconemelia* spp., ring nematodes, *Dirofilaria immitis*, dog heartworm, *Ditylenchus* spp., *Heterodera* spp., cyst nematode, *Heterodera zeae*, corn cyst nematode, *Hirschmanniella* spp., root nematodes, *Hoplolaimus* spp., lance nematodes, *Meloidogyne* spp., (*Meloidogyne incognita*, *Onchocerca volvulus*, hook-tail worm, *PraLylenchus* spp.,

lesion nematode, *Radopholus* spp., burrowing nematode and *Rotylenchus reniformis*) (kidney-shaped nematode.

Symphyla, such as Scutigerella immaculata.

Especially, the compound of the present invention provides excellent control effects against peach aphid, diamondback moth, armyworm, and carmine spider mite at lower dosage.

Thanks to their positive characteristics, the compounds mentioned above can be advantageously used in protecting crops of farming and gardening, domestic and breeding animals, as well as environments frequented by human beings, from pathogens, insects and pest mites.

In order to obtain desired effect, the dosage of the compound to be applied can vary with various factors, for example, the used compound, the protected crop, the type of harmful organism, the degree of infestation, the climatic conditions, the application method and the adopted formulation

The dosage of compounds in the range of 10 g to 5 kg per 20 hectare can provide a sufficient control.

A further object of the present invention also includes fungicidal, insecticidal/acaricidal compositions containing the compounds having general formula I as active ingredient, and the weight percentage of the active ingredient in the 25 composition is 1-99%. The fungicidal, insecticidal/acaricidal compositions also include the carrier being acceptable in agriculture, forestry, public health.

The compositions of the present invention can be used in the form of various formulations. Usually, the compounds having general formula I as active ingredient can be dissolved in or dispersed in carriers or made to a formulation so that they can be easily dispersed as an fungicide or insecticide. For example: these chemical formulations can be made into wettable powder, oil miscible flowable, aqueous suspension, aqueous emulsion, aqueous solution or emulsifiable concentrates. Therefore, in these compositions, at least a liquid or solid carrier is added, and usually suitable surfactant(s) can be added when needed.

Still also provided by the present invention are the application methods for controlling phytopathogenic fungi, insects, pest mites: which is to apply the compositions of the present invention to the phytopathogenic fungi, insects, pest mites as mentioned above or their growing loci. The suitable 45 effective dosage of the compounds of the present invention is usually within a range of 10 g/ha to 1000 g/ha, preferably from 20 g/ha to 500 g/ha. For some applications, one or more other fungicides, insecticides/acaricides, herbicides, plant growth regulators or fertilizer can be added into the fungicidal, insecticidal/acaricidal compositions of the present invention to make additional merits and effects.

Besides application fields mentioned above, the compounds having general formula I of the present invention can also be used to prepare anticancer drugs to cure or relieve cancer in some tissue or organ. The cancer mentioned includes, but without being restricted thereby, colon cancer, liver cancer, lymphomas, lung cancer, esophageal cancer, breast cancer, central nervous system tumors (CNST), melanoma, ovarian cancer, cervical cancer, kidney cancer, leukaemia, prostate cancer, pancreatic cancer, bladder cancer, rectal cancer or stomach cancer. Particularly, the compounds having general formula I of the present invention have better growth inhibition effect on bladder cancer cells.

It should be noted that variations and changes are permitted within the claimed scopes in the present invention.

36

DETAILED DESCRIPTION OF THE INVENTION

The present invention is illustrated by the following examples, but without being restricted thereby. (All raw materials are commercially available unless otherwise specified.)

PREPARATION EXAMPLES

Example 1

The Preparation of Intermediate 4,5-dichloro-6-methylpyrimidine

1) The Preparation of 4-hydroxyl-5-chloro-6-methylpy-rimidine

$$\begin{array}{c} O \\ O \\ CI \\ \\ NH \\ \\ H_2N - CH \cdot CH_3COOH \\ \end{array} \qquad \begin{array}{c} CH_3ONa \\ \\ N \\ \end{array} \qquad \begin{array}{c} OH \\ \\ N \\ \end{array}$$

8.80 g (0.16 mol) of CH₃ONa in methanol was added slowly to a solution of 11.30 g (0.11 mol) of formimidamide in 50 mL of methanol at room temperature under stirring, the mixture was stirred for another 2 h after addition at room temperature. Followed by addition of 11.17 g (0.068 mol) of ethyl 2-chloro-3-oxobutanoate, the mixture was continued stirring for another 5-7 h at room temperature. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was concentrated under reduced pressure and pH was adjusted to 5-6 with HCl, and then filtered to afford orange-yellow solid, the water phase was extracted with ethyl acetate (3×50 ml), dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. The residue was dissolved to 50 ml of ethyl acetate, stand overnight to obtain 6.48 g as orangeyellow solid with yield of 66%, m.p, 181~184° C.

2) The Preparation of Intermediate 4,5-dichloro-6-methylpyrimidine

50 ml of POCl₃ was added dropwise to a solution of 14.5 g (0.1 mol) of 4-hydroxyl-5-chloro-6-methylpyrimidine in 50 mL of toluene, the mixture was refluxed for 5-7 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was concentrated under reduced pressure to remove toluene and extra POCl₃, and then poured into ice water. The water phase was extracted with ethyl acetate (3×50 ml), the organic phases were emerged, dried over anhydrous magnesium sulfate,

45

50

37

filtered and then concentrated under reduced pressure. The residue was purified through silica column to give 14.43 g as yellow liquid with yield of 88.5%.

Example 2

The Preparation of Intermediate 4,5-dichloro-6-(difluoromethyl)pyrimidine

1) The Preparation of 4-hydroxyl-5-chloro-6-(difluoromethyl)pyrimidine

$$\begin{array}{c} F \\ \downarrow \\ F \\ CI \\ \\ H_2N \\ \hline \\ CH_3ONa \\ \hline \\ CH_3ONa \\ \hline \\ CH_3ONa \\ \hline \\ CH_3OH \\ \\ \end{array}$$

A solution of 71.9 g (0.70 mol) of formimidamide in 150 mL of methanol was stirred at 5-10° C., 64.6 g (1.20 mol) 30 of CH₃ONa in methanol prepared and cooled to room temperature ahead of time was added slowly to the above solution under stirring, followed by addition of 100 g (0.50 mol) of ethyl 2-chloro-4,4-difluoro-3-oxobutanoate in 100 ml of methanol, the mixture was continued stirring for another 3-4 h at room temperature. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was concentrated under reduced pressure and pH was adjusted to 5-6 with HCl, and then filtered to afford 65 g as white solid with yield of 73%. m.p. 204–206° C.

2) The Preparation of 4,5-dichloro-6-(difluoromethyl)pyrimidine

$$\bigcap_{N} \bigcap_{CHF_2} \bigcap_{POCl_3} \bigcap_{N} \bigcap_{CHF_2} \bigcap$$

100 ml of POCl₃ was added dropwise to a solution of 65.0 g (0.36 mol) of 4-hydroxyl-5-chloro-6-(difluoromethyl)pyrimidin in 150 mL of toluene, the mixture was refluxed for 3-5 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was concentrated under reduced pressure to remove toluene and extra POCl₃, and then poured into ice water. The water phase was extracted with ethyl acetate (3×50 ml), the organic phases were emerged, washed with saturated sodium bicarbonate, dried over anhydrous magnesium sulfate, filtered and then concentrated under reduced pressure. The residue was purified through silica column to give 64.5 g as yellow liquid, cooled to be solid in refrigerator with yield of 90%.

38

Example 3

The Preparation of Compound 5

0.21 g (1.5 mmol) of potassium carbonate was added to a solution of 0.16 g (1.0 mmol) of 2-(benzo[d][1,3]dioxol-5-yl)ethanamine in 10 mL of DMF, followed by addition of 0.16 g (1.0 mmol) of 4,5-dichloro-6-methylpyrimidine under stirring, the mixture was heated to 80° C. for 2 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was poured into water and extracted with ethyl acetate, the organic phase was washed with water and saturated brine, dried, filtered and then concentrated under reduced pressure. The residue was purified through silica column (ethyl acetate/petroleum ether (boiling point range 60-90° C.)=1:4, as an eluent) to give 0.23 g of compound 5 as white solid, m.p, 109-110° C.

¹H-NMR (300 MHz, internal standard TMS, solvent CDCl₃) δ (ppm): 2.45 (3H, s), 2.85 (2H, t), 3.71 (2H, q), 5.40 (1H, s), 5.95 (2H, s), 6.72 (3H, m), 8.39 (1H, s).

Example 4

The Preparation of Compound 6

0.21 g (1.5 mmol) of potassium carbonate was added to a solution of 0.16 g (1.0 mmol) of 2-(benzo[d][1,3]dioxol-5-yl)ethanamine in 10 mL of DMF, followed by addition of 0.18 g (1.0 mmol) of 4,5-dichloro-6-ethylpyrimidine (the preparation refers to Example A, the difference is replacing ethyl 2-chloro-3-oxobutanoate to ethyl 2-chloro-3-oxopentanoate) under stirring, the mixture was heated to 80° C. for 2 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was poured into water and extracted with ethyl acetate, the organic phase was washed with water and saturated brine,

dried, filtered and then concentrated under reduced pressure. The residue was purified through silica column (ethyl acetate/petroleum ether (boiling point range 60-90° C.)=1:4, as an eluent) to give 0.22 g of compound 6 as white solid, m.p. 116-118° C.

 $^{1}\text{H-NMR}$ (300 MHz, internal standard TMS, solvent CDCl₃) δ (ppm): 1.26 (3H, t), 2.77 (2H, q), 2.84 (2H, t), 3.71 (2H, q), 5.42 (1H, s), 5.95 (2H, s), 6.73 (3H, m), 8.44 (1H, s).

Example 5

The Preparation of Compound 18

0.21 g (1.5 mmol) of potassium carbonate was added to a solution of 0.16 g (1.0 mmol) of 2-(benzo[d][1,3]dioxol-5-35 yl)ethanamine in 10 mL of DMF, followed by addition of 0.20 g (1.0 mmol) of 4,5-dichloro-6-(difluoromethyl)pyrimidine under stirring, the mixture was heated to 80° C. for 2 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was 40 poured into water and extracted with ethyl acetate, the organic phase was washed with water and saturated brine, dried, filtered and then concentrated under reduced pressure. The residue was purified through silica column (ethyl acetate/petroleum ether (boiling point range 60-90° C.)=1:4, 45 as an eluent) to give 0.26 g of compound 18 as white solid, m.p. 104-106° C.

 $^{1}\text{H-NMR}$ (300 MHz, internal standard TMS, solvent CDCl₃) δ (ppm): 2.843-2.888 (t, 2H, Ar—CH₂), 3.731-3.797 (q, 2H, NH—CH₂), 5.65 (s, 1H, NH), 5.950 (s, 1H, O—CH₂—O), 6.652-6.784 (m, 3H, Ar—H), 6.667-7.022 (1H, F₂C—H), 8.560 (s, 1H, pyrimidine-H).

Example 6

The Preparation of Compound 20

$$\bigcap_{N \in \mathbb{C}} CI + \bigcap_{M_2N} O \longrightarrow$$

0.21 g (1.5 mmol) of potassium carbonate was added to a solution of 0.16 g (1.0 mmol) of 2-(benzo[d][1,3]dioxol-5-yl)ethanamine in 10 mL of DMF, followed by addition of 0.22 g (1.0 mmol) of 4,5-dichloro-6-(trifluoromethyl)pyrimidine (the preparation refers to Example 2, the difference is replacing ethyl 2-chloro-4,4-difluoro-3-oxobutanoate to ethyl 2-chloro-4,4-trifluoro-3-oxobutanoate) under stirring, the mixture was heated to 80° C. for 2 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was poured into water and extracted with ethyl acetate, the organic phase was washed with water and saturated brine, dried, filtered and then concentrated under reduced pressure. The residue was purified through silica column (ethyl acetate/petroleum ether (boiling point range 60-90° C.)=1:4, as an eluent) to give 0.27 g of compound 20 as white solid, m.p. 99-101° C.

¹H-NMR (300 MHz, internal standard TMS, solvent CDCl₃) δ (ppm): 2.850-2.896 (t, 2H, Ar—CH₂), 3.742-3.808 (q, 2H, NH—CH₂), 5.65 (s, 1H, NH), 5.959 (s, 1H, O—CH₂—O), 6.658-6.792 (m, 3H, Ar—H), 8.564 (s, 1H, pyrimidine-H).

0.44 g (0.015 mol) of compound 5 was dissolved in 20 ml of ethanol, 10 ml of c.HCl was added, the mixture was refluxed for 4-10 h after addition. After the reaction was over by Thin-Layer Chromatography monitoring, the reaction mixture was concentrated under reduced pressure. The brown residue was washed with acetone (3×10 mL) to obtain 0.36 g of compound 1451 as white solid, yield 72.0%, mp. 190-200° C.

m.p. 199-200° C.

¹H-NMR (300 MHz, internal standard TMS, solvent CDCl₃) δ (ppm): 2.53 (3H, s), 2.82 (2H, t), 3.71 (2H, m), 5.95 (2H, s), 6.65 (1H, m), 6.76 (2H, m), 8.39 (1H, s).

Other compounds of the present invention were prepared 55 according to the above examples.

Physical properties and ¹HNMR spectrum (¹HNMR, 300 MHz, internal standard: TMS, ppm) of some compounds of this invention are as follows:

Compound 2: m.p. 138-140° C. δ ppm: 2.85 (t 2H), 3.73 60 (q, 2H), 5.95 (s, 2H), 6.71 (m, 3H), 8.29 (s, 1H).

Compound 104: brown oil. δ ppm: 2.864 (2H, s), 3.73-3.79 (2H, m), 3.96 (3H, s), 5.68 (1H, bs), 5.96 (2H, s), 6.65 (1H, d), 6.71 (1H, s), 6.77 (1H, d).

Compound 1452: m.p. 183-185° C. δ (CDCl₃): 2.30 (3H, 65 s), 2.48 (3H, s), 2.81 (2H, m), 3.71 (2H, m), 5.94 (2H, s), 6.66 (1H, m), 6.77 (2H, m), 7.10 (2H, d), 7.48 (2H, d), 8.75 (1H, s), 9.14 (2H, s).

Compound 1465: m.p. 206-208° C. δ (CDCl₃): 1.21 (3H, t), 2.30 (3H, s), 2.76-2.83 (4H, m), 3.70 (2H, m), 5.96 (2H, s), 6.64 (1H, d), 6.78-6.80 (2H, m), 7.10 (2H, d), 7.46 (2H, d), 8.75 (1H, bs), 8.74 (1H, s), 9.02 (1H, bs).

Biological Testing

The compounds of the present invention exhibit both excellent fungicidal activity against many fungi in agricultural field and better insecticidal activity. According to the prior art, the following compounds CK1-CK13 (wherein 10 CK1-3, 5-13 are all unknown compounds, CK4 was disclosed in JP2006008542A and JP2004238380A) and PC-1, ACTA-1 were prepared as controls, they are listed in Table 27.

21.	15
TABLE 27	13
The contrast compound I	list
No. Structure	20
CKI N N N N N N N N N N N N N N N N N N N	20 25 C
CK2	O 30 C
CK3	OH 35
CK4	40 OH 45 P
F CI H	50
CK6 F Cl	55 A
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	60

	TABLE 27-continued				
		The contrast compound list			
5	No.	Structure			
J	CK8	CI H O			
10	СК9	N N			
15		F Cl N O			
20	CK10	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
25	CK11	CI H N O			
30	CK12				
35		CI N N			
40	CK13	$\bigcup_{N \in \mathcal{N}} H \bigcup_{O} O$			
45	PC-1	$\begin{array}{c c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$			
50	ACTA-1	CI			
55	ACIA-I	H N N N			
60					

Example 8

Fungicidal Testing

Determination of fungicidal activity in vitro and protectant activity in vivo of the compounds of the present

invention were carried out against many diseases. The fungicidal results are shown in the following examples.

(1) Determination of Fungicidal Activity in Vitro

The method is as followed: High Through Put is used in the test. The compound is dissolved in a proper solvent to become a testing solution whose concentration is designed. The solvent is selected from acetone, methanol, DMF and so on according to their dissolving capability to the sample. In a no animalcule condition, the testing solution and pathogens suspension are added into the cells of 96 cells culture board, which then should be placed in the constant temperature box. 24 hours later, pathogen germination or growth can be investigated by eyeballing, and the activity in vitro of the compound is evaluated based on germination or growth of 15 compounds 2, 5, 6, 18 was 100%; control treatment.

The activities in vitro (inhibition rate) of some compounds are as follows:

The inhibition rate against rice blast:

At the dose of 25 mg/L, the inhibition rate of compounds 20 2, 18 was 100%; compound 5 was 80%; contrast compound CK1, CK2, CK4, CK5, CK6, CK7, CK9, CK10, CK13 was all 0, CK8 was 50%;

At the dose of 8.3 mg/L, the inhibition rate of compounds 2, 18 was 100%; PC-1 was 0;

At the dose of 2.8 mg/L, the inhibition rate of compounds 2. 18 was 80%:

At the dose of 0.9 mg/L, the inhibition rate of compound 18 was 80%.

The inhibition rate against cucumber gray mold:

At the dose of 25 mg/L, the inhibition rate of compound 6 was 80%; contrast compounds CK3, CK4, CK7, CK8, CK10, CK13 was all 0; CK11, PC-1, ACTA-1 was all 50%.

(2) The Determination of Protectant Activity in Vivo

The method is as followed: The whole plant is used in this test. The compound is dissolved in a proper solvent to get mother solution. The proper solvent is selected from acetone, methanol, DMF and so on according to their dissolving capability to the sample. The volume rate of 40 solvent and testing solution (v/v) is equal to or less than 5%. The mother solution is diluted with water containing 0.1% tween-80 to get the testing solution whose concentration is designed. The testing solution is sprayed to the host plant by a special plant sprayer. The plant is inoculated with fungus after 24 hours. According to the infecting characteristic of fungus, the plant is stored in a humidity chamber and then transferred into greenhouse after infection is finished. And the other plants are placed in greenhouse directly. The activity of compound is obtained by eyeballing after 7 days in common.

The protectant activities in vivo of some compounds are as follows:

The protectant activity against cucumber downy mildew 55 in vivo:

At the dose of 400 mg/L, the protectant activity of compounds 2, 5, 18, 20, 1451 and so on was 100%, compound 104 was 98%, compound 1452 was 95%;

At the dose of 100 mg/L, the protectant activity of 60 compounds 2, 5, 18, 20 was 100%, compound 104 was 95%;

At the dose of 50 mg/L, the protectant activity of compounds 2, 5, 18, 20 was 100%;

At the dose of 25 mg/L, the protectant activity of compounds 2, 5, 18 was 100%;

At the dose of 12.5 mg/L, the protectant activity of compound 5 was 100%, compound 18 was 80%.

44

The protectant activity against corn rust in vivo:

At the dose of 400 mg/L, the protectant activity of compounds 5, 6, 18, 1465 was 100%; compound 1451 was 80%:

At the dose of 100 mg/L, the protectant activity of compounds 5, 6, 18 was 100%; compound 1465 was 95%;

At the dose of 25 mg/L, the protectant activity of compounds 5, 6 was 100%;

At the dose of 6.25 mg/L, the protectant activity of compound 5 was 100%, compound 18 was 98%; compound 6 was 90%,

The protectant activity against wheat powdery mildew in

At the dose of 400 mg/L, the protectant activity of

At the dose of 100 mg/L, the protectant activity of compounds 5, 18 was 100%, compound 6 was 95%;

At the dose of 25 mg/L, the protectant activity of compound 18 was 100%, compound 6 was 90%, compound 5 was 85%;

At the dose of 6.25 mg/L, the protectant activity of compound 18 was 100%, compound 6 was 85%.

(3) The Contrastive Tests Results of Some Compounds and Contrasts

Contrastive tests were carried out between some compounds and contrasts. The test results are listed in table 28-table 30 ("//" in the following tables means no test).

TABLE 28

	The protectant activity against cucumber downy mildew						
The protectant activity (%)							
	Compound No.	400 mg/L	100 mg/L	50 mg/L	25 mg/L		
5	2	100	100	100	100		
	5	100	100	100	100		
	18	100	100	100	100		
	20	100	100	100	20		
	104	98	95	50	10		
	1451	100	0	0	0		
0	1452	95	0	0	0		
	CK1	100	30	20	0		
	CK2	100	60	40	0		
	CK 3	0	//	//	//		
	CK4	0	//	//	//		
	CK6	80	0	//	//		
5	CK8	98	45	20	0		
	CK9	50	0	//	//		
	CK10	0	//	//	//		
	CK11	30	0	//	//		
	CK12	50	0	//	//		
	CK13	0	//	//	//		

TABLE 29

	The protectant activity against wheat powdery mildew					
5	-	activity (%)				
	Compound No.	400 mg/L	100 mg/L	25 mg /L	6.25 mg /L	
	5	100	100	85	75	
	6	100	95	90	85	
,	18	100	100	100	100	
	CK1	0	//	//	//	
	CK2	60	60	40	0	
	CK 3	0	//	//	//	
	CK4	0	//	//	//	
	CK5	100	20	0	//	
5	CK6	85	25	0	//	
	CK7	80	30	0	//	

The protectant activity against wheat powdery mildew					
-	The protectant activity (%)				
Compound No.	400 mg/L	100 mg/L	25 mg /L	6.25 mg /L	
CK8	100	80	10	0	
CK9	70	10	0	//	
CK10	0	//	//	//	
CK11	0	//	//	//	
CK12	0	//	//	//	
CK13	0	//	//	//	
PC-1	100	80	0	//	
ACTA-1	0	//	//	//	

TABLE 30

The protectant activity against corn rust								
	The protectant activity (%)							
Compound No.	400 mg/L	100 mg/L	25 mg/L	6.25 mg/L				
5	100	100	100	100				
6	100	100	100	90				
18	100	100	98	30				
1465	100	95	50	0				
CK1	70	20	0	//				
CK2	75	0	//	//				
CK3	0	//	//	//				
CK4	0	//	//	//				
CK7	70	0	//	//				
CK8	100	0	//	//				
CK9	80	25	0	0				
CK10	0	//	//	//				
CK11	85	35	0	//				
CK12	40	0	//	//				
CK13	40	0	//	//				
PC-1	70	20	0	//				
ACTA-1	0	//	//	//				

Determination of insecticidal activity of compounds of the present invention against a few insects were carried out by the following procedures;

Compounds were dissolved in mixed solvent (acetone: methanol=1:1), and diluted to required concentration with water containing 0.1% of tween 80.

Diamond back moth, armyworm, Green Peach Aphid and $_{45}$ carmine spider mite were used as targets and the method of spraying by airbrush was used for determination of insecticidal biassays.

(1) Determination of Insecticidal Activity Against Diamond Back Moth

The method of spraying by airbrush: The cabbage leaves were made into plates of 2 cm diameter by use of punch. A test solution (0.5 ml) was sprayed by airbrush at the pressure of 0.7 kg/cm² to both sides of every plate. 10 Second instar larvae were put into the petri-dishes after the leaf disc air-dried and 3 replicates were set for each treatment. Then the insects were maintained in observation room (25° C., 60~70% R.H.). Scores were conducted and mortalities were calculated after 72 h.

Part of test results against diamond back moth:

At 600 mg/L, compounds 6, 18, 1465 showed 100% control of the second instar larvae of diamond back moth, compound 1452 showed 80% control; contrast compounds CK3, CK4, CK8, CK9, CK10, CK11, CK12, CK13, PC-1 65 showed 0 control, CK2 showed 20% control, CK5, ACTA-1 showed 40% control;

46

At 100 mg/L, compound 6 showed 90% control of the second instar larvae of diamond back moth, contrast compound CK2 showed 5% control, CK5 showed 20% control, CK6 showed 0 control.

(2) Determination of Insecticidal Activity Against Armyworm

The method of spraying by airbrush: The corn leaves were made into plates of 2 cm diameter by use of punch. A test solution (0.5 ml) was sprayed by airbrush at the pressure of 0.7 kg/cm² to both sides of every plate. 10 Second instar larvae were put into the petri-dishes after the leaf disc air-dried and 3 replicates were set for each treatment. Then the insects were maintained in observation room (25° C., 15 60~70% R.H.). Scores were conducted and mortalities were calculated after 72 h.

Part of test results against armyworm:

At 600 mg/L, compound 18 showed 100% control of the armyworm, compound 6 showed 90% control; contrast compounds CK1, CK3, CK4, CK5, CK6, CK7, CK8, CK9, CK10, CK11, CK12, CK13, PC-1 showed 0 control, CK2 showed 14% control, ACTA-1 showed 40% control:

At 100 mg/L, compound 6 showed 90% control of the 25 armyworm; contrast compound CK2 showed 0 control.

(3) Determination of Acancidal Activity Against Carmine Spider Mite

Method: Broadbean shoots with two true leaves in pot were taken, the healthy adults of carmine spider mite were inoculated to the leaves. The adults were counted and then sprayed with airbrush at the pressure of 0.7 kg/cm² and at dose of 0.5 ml. 3 replicates were set for each treatment. And then they were maintained in standard observation room. Scores were conducted and mortalities were calculated after 72 hrs

Parts of the test results against carmine spider mite are as follows:

At the dose of 100 mg/L, compound 18 showed 90% control against carmine spider mite; Contrast compounds CK2, CK3, CK4, CK5, CK6, CK9, CK10, CK12, CK13, ACTA-1 showed 0 control, PC-1 showed 51% control, CK1 showed 39% control, CK11 showed 25% control.

(4) Determination of Activity Against Green Peach Aphid

Method: Filter papers were put in culture dishes (Diameter=6 cm), and water was dripped on filter papers for preserving moisture. Green peach aphids (*Myzus Persicae* Sulzer) were maintained on cabbage. Leaves (Diameter=3 cm) of approximately 15-30 aphids were put in the culture dishes. Bioactivity tests were used the method of Airbrush Foliar Spray, pressure=10 psi (0.7 kg/cm2), spray volume=0.5 mL. The studies were conducted at three constant temperatures 25±1 C. in incubator cabinets with 60±5% RH. Survey the survival aphids after 48 h and calculate the death rates

Parts of the test results against green peach aphid are as follows:

At the dose of 600 mg/L, compounds 5, 6, 18, 1451, 1465 showed 100% control against Green Peach Aphid; Compound 1452 showed 90% control;

At the dose of 100 mg/L, compounds 6, 18 showed 100% control.

Contrastive tests were carried out between some compounds and contrasts. The test results are listed in table 31 ("//") in the following tables means no test).

47 TABLE 31

Contrastive tests of some compounds and contrasts against peach aphid

Insecticidal	activity	against	peach	aphid	(%)

Compound No.	600 mg/L	100 mg/L	10 mg/L	
5	100	52	0	•
6	100	100	100	
18	100	100	68	
1465	100	70	0	10
CK1	70	30	0	
CK2	20	12	0	
CK 3	0	//	//	
CK4	0	//	//	
CK5	100	35	8	
CK6	0	//	//	15
CK7	66	37	0	
CK8	0	//	//	
CK10	0	//	//	
CK11	88	0	0	
CK12	10	0	0	
CK13	50	0	0	20
PC-1	52	0	//	
ACTA-1	0	//	//	

Determination of Antitumor Activity

Example 10

In Vitro Cell Inhibition Assay Against Human Cancer Cell T24 (Bladder Cancer Cell Line)

The tested compounds are dissolved in DMSO and diluted 35 to designed concentration with culture medium.

The of cell culture technology in vitro was selected to evaluate growth inhibition rate against human bladder cancer cell line T24. 1000 to 3000 cells were inoculated into 24-well plate, followed by addition of cell culture medium (1 mL) known for technicans in this field (culture medium is RMPI-1640), after cells were cultured in incubator (CO₂ 5%, 37° C.) for 24 hours, then the tested compounds with designed concentration were added to each well. One thing should be paid much attention is that the culture medium volume, of tested compound does not exceed 0.5 of total volume. After incubation for one week, the culture medium was removed, the plate wells were washed with cold PBS once, fixed with 1% formalin at room temperature for 10 minutes, and washed with cold PBS one more time, followed by stain with 0.1% crystal violet for 30 minutes. Crystal violet can be recycled. The stained cells were washed with deionized water gently, dried in the air and reserved, were then incubated for 4 h. The inhibition rate was calculated according to the left cells of each treatment and contrast.

The inhibition rate=the left cells of each treatment/the left cells of contrast×100%

Part of the test results are as follows:

At the dose of $10 \,\mu\text{M}$, the inhibition rate of compounds 5, 6 against bladder cancer cell line T24 was 100%.

We claim:

1. A compound of formula I:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_6
 R_6

Ι

wherein:

25

 R_1 is selected from halo, C_1 - C_8 alkyl, halo C_1 - C_8 alkyl, C₃-C₈cycloalkyl, C_1 - C_8 alkoxy, halo C_1 - C_8 alkoxy, C₃-C₈alkenyloxy, haloC₃-C₈alkenyloxy, C₃-C₈alkynyloxy, haloC₃-C₈alkynyloxy, C₁-C₈alkylsulfonyloxy, C₁-C₈alkylthio, C₁-C₈alkylsulfinyl, C_1 - C_8 alkylsulfonyl, C₁-C₈alkylamino, $di(C_1-C_8alkyl)amino$, cyano C_1 -C₈alkylamino, C₁-C₈alkylcarbonylamino, C_1 - C_8 alkoxycarbonylamino, C_1 - C_8 alkoxy C_1 - C_8 alkyl, C_1 - C_8 alkylthio C_1 - C_8 alkyl, C₁-C₈alkylsulfinylC₁-C₈alkyl, C₁-C₈alkylsulfonylC₁-C₈alkyl, hydroxyC₁- C_8 alkyl or C_1 - C_8 alkylcarbonyloxy C_1 - C_8 alkyl;

R₂ is selected from H, halo, CN, NO₂, C₁-C₈alkyl, C_1 - C_8 alkoxy or halo C_1 - C_8 alkoxy;

R₃ is selected from H, halo or C₁-C₈alkyl;

 R_4 is selected from H, OH, C(\longrightarrow O)H, C_1 - C_8 alkyl, halo C_1 haloC₁-C₈alkoxy, C₁-C₈alkoxy, C₈alkyl, C₃-C₈cycloalkyl, C₁-C₈alkylthio, C₂-C₈alkenylthio, C₂-C₈alkenyl, C₂-C₈alkynyl, haloC₂-C₈alkenyl, $\label{eq:control_control} {\rm haloC_2\text{-}C_8} {\rm alkynyl}, \quad {\rm C_1\text{-}C_8} {\rm alkoxyC_1\text{-}C_8} {\rm alkyl}, \quad {\rm haloC_1\text{-}}$ C₈alkoxyC₁-C₈alkyl, C_1 - C_8 alkylthio C_1 - C_8 alkyl, C₁-C₈alkylsulfinyl, haloC₁-C₈alkylthioC₁-C₈alkyl, haloC₁-C₈alkylsulfinyl, C₁-C₈alkylsulfonyl, haloC₁-C₈alkylsulfonyl, C₁-C₈alkylaminosulfonyl, di(C₁-C₈alkyl)aminosulfonyl,

C₁-C₈alkylsulfonylaminocarbonyl,

 C_1 - C_8 alkylcarbonylaminosulfonyl,

C₃-C₈cycloalkyloxycarbonyl, C₁-C₈alkylcarbonyl, haloC₁-C₈alkylcarbonyl, C₁-C₈alkoxycarbonyl, haloC₁-C₈alkoxycarbonyl, C₁-C₈alkylcarbonylC₁-C₈alkyl, C₁-C₈alkoxycarbonylC₁-C₈alkyl, C₁-C₈alkylaminocarbonyl, di(C₁-C₈alkyl)aminocarbonyl, C₂-C₈alkenoxycarbonyl, C₂-C₈alkynoxycarbonyl,

 C_1 - C_8 alkoxy C_1 - C_8 alkoxycarbonyl,

 C_1 - C_8 alkylaminothio, ${\rm di}({\rm C_1\text{-}C_8} alkyl) aminothio,$ optionally substituted arylcarbonylC1-C6alkyl, arylcarbonyl, aryloxycarbonyl, arylC₁-C₆alkoxycarbonyl, arylC₁-C₆alkyl or heteroarylC₁-C₆alkyl, wherein substituents are independently selected from the group consisting of halo, NO2, CN, C1-C6alkyl, haloC1-C6alkyl, C1-C4alkoxy and haloC1-C4alkoxy; and

 R_5 and R_6 are independently selected from H, C_1 - C_8 alkyl, C3-C8cycloalkyl, C2-C8alkenyl, C2-C8alkynyl, haloC2- C_8 alkenyl, halo C_2 - C_8 alkynyl, C_1 - C_8 alkoxy C_1 - C_8 alkyl, optionally substituted $arylC_1$ - C_4 alkyl or heteroaryl C_1 -C₄alkyl, wherein substituents are independently selected from the group consisting of halo, C₁-C₄alkyl, haloC₁-C₄alkyl, C₁-C₄alkoxy and haloC₁-C₄alkoxy;

or R₅ and R₆, together with the carbon to which they are attached, form a C3-C8carbocycle;

or an agricultural or pharmaceutical salt thereof.

2. The compound according to claim 1, wherein:

R₁ is selected from halo, C₁-C₄alkyl, haloC₁-C₄alkyl, C₃-C₆cycloalkyl, C₁-C₄alkoxy, haloC₁-C₄alkoxy, $haloC_3\text{-}C_6 alkenyloxy,$ C₃-C₆alkenyloxy, C₃-C₆alkynyloxy, haloC₃-C₆alkynyloxy, C₁-C₄alkylsulfonyloxy, C₁-C₄alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, C₁-C₄alkylamino, di(C₁-C₄alkyl)amino, cyanoC₁-C₄alkylamino, C_1 - C_4 alkylcarbonylamino, 10C₁-C₄alkoxycarbonylamino, C₁-C₄alkoxyC₁-C₄alkyl, C_1 - C_4 alkylthio C_1 - C_4 alkyl, C₁-C₄alkylsulfinylC₁-C₄alkyl, C₁-C₄alkylsulfonylC₁-C₄alkyl, hydroxyC₁- C_4 alkyl or C_1 - C_4 alkylcarbonyloxy C_1 - C_4 alkyl;

 R_2 is selected from H, halo, CN, NO₂, C_1 - C_4 alkyl, ¹⁵ C_1 - C_4 alkoxy or halo C_1 - C_4 alkoxy;

 R_3 is H;

R₄ is selected from H, OH, C(=O)H, C₁-C₄alkyl, haloC₁haloC₁-C₄alkoxy, 20 C₁alkyl, C₁-C₄alkoxy, C₃-C₆cycloalkyl, C₁-C₄alkylthio, C₂-C₄alkenylthio, C₂-C₄alkenyl, C₂-C₄alkynyl, haloC₂-C₄alkenyl, haloC₂-C₄alkynyl, C₁-C₄alkoxyC₁-C₄alkyl, haloC₁- C_4 alkoxy C_1 - C_4 alkyl, C_1 - C_4 alkylthio C_1 - C_4 alkyl, C₁-C₄alkylsulfinyl, ²⁵ $haloC_1$ - C_4 alkylthio C_1 - C_4 alkyl, haloC₁-C₄alkylsulfinyl, C₁-C₄alkylsulfonyl, haloC₁-C₄alkylsulfonyl, C₁-C₄alkylaminosulfonyl, di(C₁-C₄alkyl)aminosulfonyl,

C₁-C₄alkylsulfonylaminocarbonyl,

C₁-C₄alkylcarbonylaminosulfonyl,

 $\begin{array}{lll} C_3\text{-}C_6\text{cycloalkyloxycarbonyl}, & C_1\text{-}C_4\text{alkylcarbonyl}, \\ \text{halo}C_1\text{-}C_4\text{alkylcarbonyl}, & C_1\text{-}C_4\text{alkoxycarbonyl}, \\ \text{halo}C_1\text{-}C_4\text{alkoxycarbonyl}, & C_1\text{-}C_4\text{alkylcarbonyl}C_1\text{-}C_4\text{alkyl}, \\ C_4\text{alkyl}, & C_1\text{-}C_8\text{alkoxycarbonyl}C_1\text{-}C_4\text{alkyl}, \\ C_1\text{-}C_4\text{alkylaminocarbonyl}, & \text{di}(C_1\text{-}C_4\text{alkyl})\text{aminocarbonyl}, \\ C_2\text{-}C_4\text{alkoxycarbonyl}, & C_2\text{-}C_4\text{alkynoxycarbonyl}, \\ C_1\text{-}C_4\text{alkoxy}C_1\text{-}C_4\text{alkoxycarbonyl}, \end{array}$

C₁-C₄alkylaminothio, di(C₁-C₄alkyl)aminothio, optionally substituted arylcarbonylC₁-C₄alkyl, arylcarbonyl, aryloxycarbonyl, arylC₁-C₄alkoxycarbonyl, arylC₁-C₄alkyl or heteroarylC₁-C₄alkyl, wherein substituents are independently selected from the group consisting of halo, NO₂, CN, C₁-C₄alkyl, haloC₁-C₄alkyl, C₁-C₄alkoxy and haloC₁-C₄alkoxy; and

- R_5 and R_6 are independently selected from H, $C_1\text{-}C_4$ alkyl, $C_3\text{-}C_6$ cycloalkyl, $C_2\text{-}C_4$ alkenyl, $C_2\text{-}C_4$ alkynyl, halo $C_2\text{-}C_4$ alkenyl, halo $C_2\text{-}C_4$ alkynyl, $C_1\text{-}C_4$ alkoxy $C_1\text{-}C_4$ alkyl, optionally substituted ary l $C_1\text{-}C_4$ alkyl or heteroary l $C_1\text{-}C_4$ alkyl, wherein substituents are independently selected from the group consisting of halo, $C_1\text{-}C_4$ alkyl, halo $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy and halo $C_1\text{-}C_4$ alkoxy;
- or R₅ and R₆, together with the carbon to which they are attached, form a C₃-C₈carbocycle;
- or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.
- 3. The compound according to claim 2, wherein:
- $\begin{array}{lll} R_1 \text{ is selected from halo, } C_1\text{-}C_4\text{alkyl, } CF_3, \text{ } CHF_2, \text{ } CCl_3, \\ CHCl_2, & C_3\text{-}C_6\text{cycloalkyl, } & C_1\text{-}C_4\text{alkoxy, } & \text{haloC}_1\text{-} \\ C_4\text{alkoxy, } & C_1\text{-}C_4\text{alkylthio, } & C_1\text{-}C_4\text{alkylsulfinyl, } & 65\\ C_1\text{-}C_4\text{alkylsulfonyl, } & C_1\text{-}C_4\text{alkoxyC}_1\text{-}C_4\text{alkyl} & \text{or } \\ C_1\text{-}C_4\text{alkylthioC}_1\text{-}C_4\text{alkyl;} & \end{array}$

 $\rm R_2$ is selected from H, halo, CN, NO_2, C_1-C_4alkyl, C_1-C_4alkoxy or haloC_1-C_4alkoxy;

 R_3 is H;

 R_4 is selected from H, OH, C(=O)H, $C_1\text{-}C_4$ alkyl, $C_3\text{-}C_6$ cycloalkyl, optionally substituted arylcarbonylC $_1\text{-}C_4$ alkyl, arylcarbonyl, aryloxycarbonyl, arylC $_1\text{-}C_4$ alkoxycarbonyl, arylC $_1\text{-}C_4$ alkyl or heteroarylC $_1\text{-}C_4$ alkyl, wherein substituents are independently selected from the group consisting of halo, NO $_2$, CN, $C_1\text{-}C_4$ alkyl, haloC $_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkoxy and haloC $_1\text{-}C_4$ alkoxy; and

 R_5 and R_6 are independently selected from H or $C_1\text{-}C_4$ alkyl;

- or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.
- 4. The compound according to claim 3, wherein:

 R_1 is selected from halo, C_1 - C_4 alkyl, CF_3 , CHF_2 or C_3 - C_6 cycloalkyl;

R₂ is selected from H, halo, CN, NO₂ or C₁-C₄alkyl;

R₃ is H;

R₄ is H; and

R₅ and R₆ are independently selected from H, CH₃ or CH₂CH₃;

- or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.
- 5. The compound according to claim 4, wherein:
- R₁ is selected from F, Cl, Br, CH₃, CH₂CH₃, (CH₂)₂CH₃, CH(CH₃)₂, (CH₂)₃CH₃, CH₂CH(CH₃)₂, C(CH₃)₃, CF₃, CHF₂ or cyclopropyl;

R₂ is Cl;

 R_3 is H;

R₄ is H; and

- R_5 and R_6 are independently selected from H, CH_3 or CH_2CH_3 ;
- or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, formic acid, acetic acid, trifluoroacetic acid, oxalic acid, methylsulfonic acid, p-toluenesulfonic acid, benzoic acid, alizaric acid, maleic acid, sorbic acid, malic acid and citric acid.
- 6. The compound according to claim 5, wherein:

R₁ is selected from Cl, CH₃, CH₂CH₃, CF₃ or CHF₂;

R₂ is Cl;

R₃ is H;

 R_4 is H;

R₅ is H; and

 R_6 is H;

or an agricultural or pharmaceutical salt thereof selected from the group consisting of hydrochloric acid, sulfuric acid, phosphoric acid, trifluoroacetic acid, methylsulfonic acid and p-toluenesulfonic acid. 20 II

51

- 7. A composition comprising a compound according to claim $\mathbf{1}$ as an active ingredient and an agriculturally acceptable carrier.
- **8**. A method of treating a fungal condition in a subject, comprising administering to said subject an effective amount of a compound according to claim **1**.
- **9.** A method of treating crops, comprising contacting said crops with an effective amount of a compound according to claim **1**.
- 10. A method for treating tumors in a subject, comprising administering to said subject an effective amount of a compound according to claim 1.
- 11. A method for the preparation of a compound of 15 formula I according to claim 1, comprising:

reacting a compound of formula II:

$$R_1$$
 R_2
 R_2

52

Ш

Ι

wherein R_1 , R_2 and R_3 are as defined in claim 1; with a compound of formula III:

$$\underset{R_4}{\overset{\text{HN}}{\longrightarrow}} \underset{R_5}{\overset{\text{O}}{\longrightarrow}} \underset{R_6}{\overset{\text{O}}{\longrightarrow}}$$

wherein R_4 , R_5 and R_6 are as defined in claim 1; to provide a compound of formula I:

$$R_3$$
 N
 R_4
 R_5
 R_6

wherein R_1, R_2, R_3, R_4, R_5 and R_6 are as defined in claim 1.

* * * * *